
esProc

Issued by Raqsoft

XML data parsing and calculation

1 Types and characteristics of XML

Contents

2 Element content only

3 Elements and attributes

4 Different element structure

5 Example of comprehensive application

<?xml version="1.0" encoding="utf-8"?>
<list>
 <item>
 <table1>
 <row>
 <column1>item 1 table 1 row 1 col 1</column1>
 <column2>item 1 table 1 row 1 col 2</column2>
 </row>
 </table1>
 <table2>
 <row>
 <columnX>item 1 table 2 row 1 col 1</columnX>
 <columnY>item 1 table 2 row 1 col 2</columnY>
 <columnZ>item 1 table 2 row 1 col 3</columnZ>
 </row>
 </table2>
 </item>
</list>

Types and characteristics of XML

 Different element structure

<?xml version="1.0" encoding="utf-8"?>
<BookStore>
 <Book>
 <title>Basic Mathematics</title>
 <author>Roy</author>
 <author>Jon</author>
 <copies>5</copies>
 <price>100</price>
 </Book>
</BookStore>

<?xml version="1.0" encoding="utf-8"?>
<library>
 <book category="COOKING">
 <title lang="en">Everyday Italian</title>
 <author name="Giada De Laurentiis" country="it"/>
 <year>2005</year>
 <info>Hello Italian!</info>
 </book>
</library>

 Element content only

 Elements and attributes

Element content only

XML as a data source is a common requirement, but the existing Java technology is cumbersome to implement: poor business flexibility, many API interfaces, bloated

code and so on. So the XML () function is provided by esProc, which can deal with all kinds of XML conveniently.

 A
1 =demo.query(“select * from EMPLOYEE")

2 =xml(A1)

3 =xml(A2)

4 =xml(A2,"xml/row")

A2: Parse the sequence
table into XML string

A4: Take out the
content of the < row >
layer directly and
return the sequence
table

Details

A3:Parse XML string
into sequence table
Take root node < XML >
content

The sub node of < XML >
is < row >

Element value under < row >
node

A1:Query data table

Element content only — Multi attribute merging and formatting

 Multiple books form the bookstore list

 Each book may have multiple authors that need to be merged into one column. There may be unallowable characters in copies that need to be formatted as

numeric

 A B

1 =file(“/workspace/BookStore.xml") /Open xml file

2 =xml(A1.read(),"BookStore/Book")
/Parsing XML strings
as records

3
=A2.new(title:title,if(ifa(author),author.conc
at("&"),author):author,if(ifstring(copies),int
(replace(copies,";","")),copies):copies,price)

/Generate sequence
table

Format as integers

A2: XML structured Use & to connect
multiple values

result

Elements and attributes

The xml() function has the option @s, which can parse XML strings like <K F=v F=v …>D</K> into records with K,F,… as fields, the value of K is D. When D has

multiple layers of contents, it’s parsed as array. In case of <K …./K>, D is parsed as null. In case of <K…></K>, D is parsed as empty string.

 A
1 =file("/root/workspace/book.xml").read()

2 =xml@s(A1)

3 =xml@s(A1).bookstore

4 =A3.new(category,book(1).title:title,...)

A1: Read file, parse to XML string

A2: Parse into multi-
level sequence

The sub node is <book>,
attribute：<category>

Elements and attributes
under the < book > node

A4: Generate a new sequence table and take out
the corresponding element value and attribute
value

Elements and attributes — Aligned merging and filtering

 Each book may have multiple authors whose attributes name and country need to be combined in a column

 Filtering and grouping can be implemented after structuring

result1

result2

result3

1. Structured XML, in which author is list, and the values of attribute name and

country need to be connected with commas respectively

2. Structured XML, in which the author is list, and the values of attribute name and

country need to be combined into a column

3. On the basis of 2, only the 2005 book information is queried

Elements and attributes — Aligned merging and filtering(Example)

esProc can directly parse and calculate XML, and its agile syntax system only needs a little code to complete the above requirements.

 A B

1 =file(“/workspace/book1.xml") /Open xml file

2 =xml@s(A1.read(),"library/book").library
/Parse the record with XML string as a field, and obtain the

node value

3

=A2.new(category,book.field("year").ifn():year,book.field("title").ifn
():title,book.field("lang").ifn():lang,book.field("info").ifn():info,b
ook.field("name").select(~).concat@c():name,book.field("country").sele
ct(~).concat(","):country)

/Generate a new sequence table, obtain the field value of each

field in the sequence and make a non empty judgment, where

the list needs to be connected as a string

4
=A3.new(title,category,year,(lang,name.array().(~+"[")++country.array(
).(~+"]")).concat@c():author,info)

/Generate a new sequence table, where the list column needs

to be added in alignment and then connected as a string

5 =A4.select(year==2005) /Filter according to conditions on the basis of A4

A2:Process decomposed

Different element structure

XML (x, s) function, where s represents the layer ID to be taken out, multi-layer is / separated, and empty represents to be taken from the root. When there are elements

of different structures under the node, s can be used to accurately get some layer elements.

 A

1 =file("/root/workspace/book.xml").read()

2 =xml(A1,"list/book")

3 =xml(A1,"list/audio")

A1: Read file, parse to XML string

A2: Take out the contents of the < book >
layer and return the sequence table

A3: Take out the content of < audio > layer
and return the sequence table

Different element structure — Sub nodes contain different elements

 List of multiple items

 Each item has a fixed number of tables, and the tables are different. Each table has a variable number of rows

table1

table2

List...

Different element structure — Sub nodes contain different elements(Example)

In the function, specify the level ID to obtain the element value of this level accurately.

 A B

1 =file(“/workspace/items.xml") /Open xml file

2 =xml(A1.read(),"list/item/table1")
/Parse the record with XML string as a field, and obtain the

node value

3 =A2.new(#:ItemID,row) /Generate sequence number, node value set

4 =A3.news(row;ItemID,row.column1:column1,row.column2:column2)
/Expand the set to generate a new sequence
table

5 =xml(A1.read(),"list/item/table2")
/Parse the record with XML string as a field, and obtain the

node value

6 =A5.new(#:ItemID,row) /Generate sequence number, node value set

7
=A6.news(row;ItemID,row.columnX:columnX,row.columnY:columnY,row.column
Z:columnZ)

/Expand the set to generate a new sequence
table

A3: Process decomposed

A6: Process decomposed

Example of comprehensive application — database and XML Join

The cities table is from MySQL database, and the state data is from XML file. After the join calculation, the population of each state is grouped and counted.

cities

state.xml

result

Example of comprehensive application — database and XML Join(Example)

esProc can directly read XML and MySQL data for mixed calculation; it provides a consistent calculation interface, and various data sources can be calculated in a

unified style.

 A B

1 =Mysql.query("select * from cities where STATEID<=2") /Query cities table

2 =xml(file("/workspace/state.xml").read(),"data/state")
/Parse the record with XML string as a field, and obtain the

node value

3 =A2.new(STATEID,NAME,ABBR).keys(STATEID) /Generate sequence table and set primary key

4 >A1.switch(STATEID,A3:STATEID) /cities and state join

5 =A1.groups(STATEID.NAME:STATE;sum(POPULATION):POPULATION) /Group and aggregate

A4:After join

A3:After Xml structured

Example of comprehensive application — Batch parsing

 There are multiple XML files in the directory, and each XML has the same structure

 Batch parsing and structuring

result

Xml file
directory

Q1_2015_person.xml
Q2_2015_person.xml
Q3_2015_person.xml
Q4_2015_person.xml
...

 A B

1 =directory@p(“/workspace/tmp/*.xml")
/List file names that meet the
wildcard path

2 =A1.(xml(file(~).read())) /arse each XML string as a record

3 =A2.conj(~.array()) /Merge each sequence

A1: XML in the current
directory

A2: Read each XML separately

person.xml

 A B

1
=wsdl=concat("\"http://www.webxml.com.cn/WebServices/WeatherWebService.asmx/g
etWeatherbyCityName?theCityName=",urlencode(argCity,"UTF-8"),"\":\"UTF-8\"")

/Combine the argcity parameter to
spell the complete WSDL URL

2 =httpfile(${wsdl})
/Turn URL results into a file
stream

3 =xml(file(A2).read(),"ArrayOfString/string") /Parse xml

4 =create(${A1.(concat("str",#)).concat@c()}) /Create empty sequence table

5 >A4.record(A3) /Fill records in sequence table

Example of comprehensive application — Structuring WebService

 Call the external WebService according to the incoming parameters to return the weather conditions of the region

 Structuring xml result set

WebService

result

weather.xml

"http://www.webxml.com.cn/WebServices/Wea
therWebService.asmx/getWeatherbyCityName?
theCityName=%E4%BF%A1%E9%98%B3":"UTF-8"

argCity=Xinyang，A1: Spliced URL List...

Example of comprehensive application — Get different data according to parameters

 An XML contains multiple label structures, each of which has the same number of column label attributes

 Get corresponding data and present different reports according to different parameters

report1

report2

arg=book， Extract data labeled book

arg=audio， Extract data labeled audio

big.xml

List...

Example of comprehensive application — Get different data according to parameters
(Example)

After XML is parsed by esProc, its agile syntax system can complete logical judgment with little code, and its unique macro mechanism greatly improves the degree of

code reuse.

 A B C

1 =file(“/workspace/big.xml") /Open xml file

2 =xml@s(A1.read()) =${arg}=null /A2:parse xml,B2:Dedine the macro variable arg, null by default

3 =A2.library /Get library node value

4 for A3 if(A4.fname(1)==arg) /A4:Loop the node,B4:Judge the first field name according to the parameter

5

=${arg}=if(${arg}==null,create(category,${A4.${arg}.conj(~
.fname()).concat@c()}).record(A4.${arg}.conj(~.array()).in
sert(1,A4.category)),${arg}.record(A4.${arg}.conj(~.array(
)).insert(1,A4.category)))

6 =${arg}=${arg}.new(category,title,lang,name,country,year)

A3: Get library node value as sequence
C5: When the loop variable is empty for the first time, create the columns contained in the
empty sequence table, then insert a record into the empty sequence table, and then insert until
the end.

A6:Generate new sequence table， return the general
columns required by the report

