
JSON data calculat ion

and import ing into

database

Import and parse

Import sequence table into

database

Summary

1

2
CONTENTS

3

01
Import and parse

1. Single layer JSON data file

Let's start with a simple example to see how to read the JSON file of common key
value mapping. The following is the JSON data of product information:

[{"PRODUCT_ID":1,"PRODUCT_NAME":"Apple Juice",
"SUPPLIER_ID":2,"CATEGORY_ID":1, …},
{"PRODUCT_ID":2,"PRODUCT_NAME":"Milk",
"SUPPLIER_ID":1,"CATEGORY_ID":1, …},
{"PRODUCT_ID":3,"PRODUCT_NAME":"Tomato sauce",
"SUPPLIER_ID":1,"CATEGORY_ID":2, …},
{"PRODUCT_ID":4,"PRODUCT_NAME":"Salt",
"SUPPLIER_ID":2,"CATEGORY_ID":2, …},
…]

1. Single layer JSON data file

It only needs a simple one sentence script for SPL to import JSON data file:

=json(file("product.json").read())

The results is as follows:

PRODUCT_ID PRODUCT_NAME SUPPLIER_ID CATEGORY_ID …

1 Apple Juice 2 1 …

2 milk 1 1 …

3 Tomato sauce 1 2 …

4 salt 2 3 …

… … … … …

2. Multi layer JSON data file with the same structure of detail data

Here is the JSON data for the order information. There are two layers: the first is country and
area, and the second is detailed data. Now we want to import orders from North and South
China in 2013.

[{"COUNTRY":"China","AREA":"Northeast China","ORDERS":[
{"ORDER_ID":10252,"CUSTOMER_ID":"SUPRD","EMPLOYEE_ID":4, …},
{"ORDER_ID":10318,"CUSTOMER_ID":"ISLAT","EMPLOYEE_ID":8, …},
…]},
{"COUNTRY":"China","AREA":"East China","ORDERS":[
{"ORDER_ID":10249,"CUSTOMER_ID":"TOMSP","EMPLOYEE_ID":6, …},
{"ORDER_ID":10251,"CUSTOMER_ID":"VICTE","EMPLOYEE_ID":3, …},
…]},
…]

2. Multi layer JSON data file with the same structure of detail data

Define parameters: country, area, and year. In the future, when importing different
countries, areas, and years, you no longer need to modify SPL, just modify the
corresponding parameter values. It should be noted that the value of area is a
sequence, so that the data of multiple areas can be read at the same time. As in the
following figure:

Name Value

Country China

Area [North China, South China]

Year 2013

2. Multi layer JSON data file with the same structure of detail data

Let's take a look at the SPL script:

A B

1 =json(file("orders.json").read()) =A1.select(COUNTRY==Country &&
Area.contain(AREA))

2 =B1.news(ORDERS;COUNTRY,
AREA,${B1.ORDERS.fname().concat@
c()})

=A2.select(year(ORDER_DATE)==Ye
ar)

2. Multi layer JSON data file with the same structure of detail data

First, import the JSON file. The data is multi-layer:

=json(file("orders.json").read())

COUNTRY AREA ORDERS

China Northeast China [[10252,SUPRD,4,...],[10315,ISLAT,4,...],...]

China East China [[10249,TOMSP,6,...],[10251,VICTE,3,...],...]

China Central China [[10254,CHOPS,5,...],[10265,BLONP,2,...],...]

China North China [[10248,VINET,5,...],[10250,HANAR,4,...],...]

China South China [[10287,RICAR,8,...],[10296,LILAS,6,...],...]

ORDER_ID CUSTOMER_ID EMPLYEE_ID …

10287 RICAR 8 …

10296 LILAS 6 …

… … … …

Double click to view details

2. Multi layer JSON data file with the same structure of detail data

The year and area fields are on the first level, and we can directly filter out the
data of North and South China.

=A1.select(COUNTRY==Country && Area.contain(AREA))

The result is as follows：

COUNTRY AREA ORDERS

China North China [[10248,VINET,5,...],[10250,HANAR,4,...],...]

China South China [[10287,RICAR,8,...],[10296,LILAS,6,...],...]

2. Multi layer JSON data file with the same structure of detail data

=B1.news(ORDERS;COUNTRY, AREA,${B1.ORDERS.fname().concat@c()})

The filtered result is used to generate a sequence table, which consists of the fields of country, area and order
details. The results are as follows:

COUNTRY AREA ORDER_ID CUSTOMER_ID EMPLOYEE_ID ORDER_DATE

China North China 10248 VINET 5 2012-07-04

China North China 10250 HANAR 4 2012-07-08

China North China 10253 HANAR 3 2012-07-10

China North China 10255 RICSU 9 2012-07-12

Here, the parameters of the news function use macros. Macro uses ${} to enclose expressions. SPL will first evaluate macro

expressions, and then replace ${} with the evaluated results as string values. The actual execution of A2 is：

=B1.news(ORDERS;COUNTRY, AREA, ORDER_ID, CUSTOMER_ID, EMPLOYEE_ID, ORDER_DATE, …)

2. Multi layer JSON data file with the same structure of detail data

Finally, the records with order date as year 2013 are selected from the sequence table.

=A2.select(year(ORDER_DATE)==Year)

The final result is as follows：

COUNTRY AREA ORDER_ID CUSTOMER_ID EMPLOYEE_ID ORDER_DATE

China North China 10402 ERNSH 8 2013-01-02

China North China 10403 ERNSH 4 2013-01-03

China North China 10404 MAGAA 2 2013-01-03

China North China 10407 OTTIK 2 2013-01-07

3. Multi layer JSON data files with different structure of detailed data

Because of the complexity of data sources, the detailed data of JSON data files may be of different
structures. In the following sales data: the first level takes year and month as the dimension, the second
level takes country as the dimension, and the third level is detailed data. But in the detailed data, due
to different sales channels, the data structure is not completely consistent. Now we're going to read
sales data for 2017 and 2018 in the US and Canada.

[{"YEAR":2016,"MONTH":1,"SALES":
[{"COUNTRY":"Germany","SALES":
[{"ORDERNUMBER":10101,"QUANTITYORDERED":25,"PRICEEACH":100,"ORDE
RLINENUMBER":4,"SALES":3782,"ORDERDATE":"1/9/2016 0:00", …}, …], …],
{"YEAR":2016,"MONTH":2,"SALES":
[{"COUNTRY":"Denmark","SALES":
[{"ORDERNUMBER":10105,"QUANTITYORDERED":50,"PRICEEACH":100,"ORDE
RLINENUMBER":2,"SALES":7208,"ORDERDATE":"2/11/2016 0:00", …}, …], …],
…]

3. Multi layer JSON data files with different structure of detailed data

For convenience, let's define two parameters first: year and country

Name Value

Year [2017, 2018]

Country [USA, Canada]

We first need to determine the structure of the detailed data. In this example, we want to list all the fields. If
the detailed data does not contain this field, it is set to blank. For example, the addressline2 field is missing
from the following data:

YEAR COUNTRY ORDERNUMBER ADDRESSLINE1 ADDRESSLINE2

2017 USA 10353 2440 Pompton St.

2017 USA 10352 16780 Pompton St.

3. Multi layer JSON data files with different structure of detailed data

Now let's look at SPL:

A B

1 =json(file("sales.json").read()) =A1.select(Year.contain(YEAR))

2 =B1.news(SALES;YEAR,MONTH,COUNTR
Y,SALES)

=A2.select(Country.contain(COU
NTRY))

3 for(B2) =A3.SALES.fname()&B3

4 =B2.news(SALES; YEAR,
COUNTRY,${B3.concat@c()})

3. Multi layer JSON data files with different structure of detailed data

First, import JSON file of multiple layers. Since the year field is on the first level, we can directly filter
out the data of Year 2017 and 2018:

=json(file("sales.json").read()) =A1.select(Year.contain(YEAR))

YEAR MONTH SALES

2017 1 [[France,[10211,41,100, ...],[10211,41,100, ...], ...], ...]

2017 2 [[Australia,[10223,37,100, ...],[10223,47,100, ...], ...], ...]

2017 3 [[Australia,[10227,25,100, ...],[10227,31,48.52, ...], ...], ...]

2017 4 [[Canada,[10235,24,76.03, ...],[10235,23,96.29, ...], ...], ...]

2017 5 [[Finland,[10247,44,100, ...],[10247,25,100, ...], ...], ...]

3. Multi layer JSON data files with different structure of detailed data

Use the news function to combine the year / month fields with the country and monthly sales details.

=B1.news(SALES;YEAR,MONTH,COUNTRY,SALES)

YEAR MONTH COUNTRY SALES

2017 1 France [[10211,41,100, ...],[10211,41,100, ...], ...]

2017 1 Japan [[10210,23,100, ...],[10210,34,100, ...], ...]

2017 1 Spain [[10212,39,100, ...],[10212,33,100, ...], ...]

2017 1 UK [[10213,38,94.79, ...],[10213,25,83.39, ...], ...]

2017 1 USA [[10215,35,100, ...],[10209,39,100, ...], ...]

3. Multi layer JSON data files with different structure of detailed data

B2：Filter out data of US and Canada through A2.select(Country.contain(COUNTRY)).
A3~A4： Because the detail data may have different structures, we use full fields names as parameters to create
a sequence table. The value of the field will be set according to the name, and null will be set by default if the
field does not exist. （As the “ADDRESSLINE1” and “ ADDRESSLINE2” fields in the following figure）：

YEAR COUNTRY ORDERNUMBER ADDRESSLINE1 ADDRESSLINE2

2017 USA 10353 2440 Pompton St.

2017 USA 10352 16780 Pompton St.

2017 USA 10352 16780 Pompton St.

2018 USA 10369

2018 USA 10362

2018 USA 10371

3. Multi layer JSON data files with different structure of detailed data

The final result：

At this point, a JSON file with different detailed data structure of multi-layer structure is expanded into a two-dimensional
table.

YEAR COUNTRY ORDERNUMBER QUANTITYORDERED PRICEEACH ORDERLINENUMBER

2017 USA 10215 35 100 3

2017 USA 10209 39 100 8

2017 USA 10215 46 100 2

2017 USA 10215 27 89.38 10

2017 USA 10215 33 43.13 9

2017 USA 10215 49 100 4

02
Import sequence table into database

1. Import single table into database

Take the JSON file of product order information in 1.1 as an example to update the parsed sequence table
to the product table of the database.

[{"PRODUCT_ID":1,"PRODUCT_NAME":
"Apple Juice",
"SUPPLIER_ID":2,"CATEGORY_ID":1, …},
{"PRODUCT_ID":2,"PRODUCT_NAME":"
Milk",
"SUPPLIER_ID":1,"CATEGORY_ID":1, …},
{"PRODUCT_ID":3,"PRODUCT_NAME":"
Tomato sauce",
"SUPPLIER_ID":1,"CATEGORY_ID":2, …},
…]

JSON file:

Product

PRODUCT_ID

PRODUCT_NAME

SUPPLIER_ID

CATEGORY_ID

…

Database table：

1. Import single table into database

It’s very simple for SPL to import sequence table into database, just using db.update()
function. The SPL script is as follows：

A

1 =json(file("product.json").read())

2 =connect("db")

3 =A2.update(A1, Product)

A1：Import JSON file as sequence table. A2：Connect data source.

A3：Use db.update() function，update the sequence table imported in A1 to the product table in the database. Note that the primary key

parameter of the update function is omitted here. In this case, it will be updated according to the primary key of the database table product; if the

product table has no primary key, it will be updated according to the primary key of A1; if there is no primary key, it will be updated according to

the first field.

2. Import multi tables into database

Take the JSON file of order information as an example. JSON data is divided into two layers: the
first layer is order, and the second layer is order details. To update the order and order details of
2018 and later to the order table and order details table of the database respectively.

[{"ORDER_ID":10248,"ORDER_DATE":"2012-07-04",...,"ORDER_DETAILS":[
{"PRODUCT_ID":17,"PRICE":14,"AMOUNT":12, …},
{"PRODUCT_ID":42,"PRICE":9,"AMOUNT":9, …},
…]}, …]

Order

ORDER_ID

ORDER_DATE

CUSTOMER_ID

EMPLOYEE_ID

…

OrderDetail

ORDER_ID

PRODUCT_ID

PRICE

AMOUNT

…

1 : N

2. Import multi tables into database

Let's take a look at SPL, as follows:

A B

1 =json(file("orders.json").read()) =A1.select(year(ORDER_DATE)>=2018)

2 =connect("demo")

3 =B1.fname().delete(B1.fname().l
en())

=A2.update(B1,Order,${A3.concat@c()})

4 =B1.conj(ORDER_DETAILS.deriv
e(B1.ORDER_ID:ORDER_ID))

=A2.update(A4,OrderDetail)

2. Import multi tables into database

First, import the JSON file. The data is two-tier:

=json(file("orders.json").read())

ORDER_ID ORDER_DATE CUMSTOMER_ID ORDER_DETAILS

10248 2012-07-04 VINET [[17,14,12,...],[42,9,10,...],...]

10249 2012-07-05 TOMSP [[14,18,9,...],[51,42,4,...],...]

10250 2012-07-08 HANAR [[41,7,10,...],[51,42,3,...],...]

10251 2012-07-08 VICTE [[22,16,6,...],[57,15,15,...],...]

10252 2012-07-09 SUPRD [[20,64,40,...],[33,2,25,...],...]

PRODUCT_ID PRICE AMOUNT …

20 64 40 …

33 2 25 …

… … … …

Double click to view details

2. Import multi tables into database

The order date field is on the first level, so the data of 2018 and later can be directly
filtered out.

=A1.select(year(ORDER_DATE)>=2018)

The result is as follows：

ORDER_ID ORDER_DATE CUMSTOMER_ID ORDER_DETAILS

10808 2018-01-01 OLDWO [[56,38,20,...],[76,18,50,...]]

10809 2018-01-01 WELLI [[52,7,20,...]]

10810 2018-01-01 LAUGB [[13,6,7,...],[25,14,5,...],...]

2. Import multi tables into database

After connecting to the database, first update the main table order table. However, B1 has one more
order_details field than the database table. When using the update function to update, you need to specify
the update field. The field parameter uses a macro. Use B1.fname() to get all the field names, and then
delete the last member.

=B1.fname().delete(B1.fname().len()) =A2.update(B1,Order,${A3.concat@c()})

B1

ORDER_ID

ORDER_DATE

CUSTOMER_ID

EMPLOYEE_ID

…

ORDER_DETAILS

Order

ORDER_ID

ORDER_DATE

CUSTOMER_ID

EMPLOYEE_ID

…

update

2. Import multi tables into database

=B1.conj(ORDER_DETAILS.derive(B1.ORDER_ID:ORDER_ID))

First, use the derive() function to add the order ID field to order_details. Then, using the function of
conj(), the order_details of each order is expanded and put together, which is consistent with the
data structure of the order details in the database. The results are as follows:

ORDER_ID PRICE AMOUNT DISCOUNT ORDER_ID

56 38 20 0.15 10808

76 18 50 0.15 10808

52 7 20 0 10809

ORDER_ID ORDER_DETAILS

10808 [[56,38,20,...],[76,18,50,...]]

10809 [[52,7,20,...]]

derive

ORDER_ID ORDER_DETAILS

10808 ORDER_ID PRICE AMOUNT DISCOUNT ORDER_ID

56 38 20 0.15 10808

76 18 50 0.15 10808

10809 ORDER_ID PRICE AMOUNT DISCOUNT ORDER_ID

52 7 20 0 10809

B1.conj(ORDER_DETAILS)

2. Import multi tables into database

=A2.update(A4,OrderDetail)

Finally, update the sub table order details. Since the data structure of A4 is consistent with the
database table, it is no longer necessary to specify update fields.

A4

ORDER_ID

PRODUCT_ID

PRICE

AMOUNT

DISCOUNT

OrderDetail

ORDER_ID

PRODUCT_ID

PRICE

AMOUNT

DISCOUNT

update

03
Summary

Parse and calculation Import JSON
Import sequence table into

database

First read in the JSON file,

and then use the JSON ()

function to parse it into a

sequence table.

According to the actual needs,

analyze and calculate the data.

SPL sequence table provides

a wealth of functions, which

can be used for various

operations.

Just use the db.update() function

to import the sequence table into

database. When JSON files

correspond to multiple tables, pay

attention to the order of update,

from the main table to the sub

table.

As we can see from the previous chapters, the focus of JSON data usage is the parsing and calculation part. When dealing with multi-layer and

complex data with different structure, SPL can simply use "table. field" to reference members, and there are rich functions to support calculation.

Process of using JSON data

Summary

THANKS

