
esProc

Issued by Raqsoft

Excel integrate esProc

1 Preface
2 Structural relationship
3 Environment setting
 A. Java installation
 B. esProc setting
 C. Load plug-in
4 Operation instructions

Contents

5 Use of DFX:
 A. Cell value operation
 B. Table filling operation
 C. Copy operation
 D. Pass parameters to DFX
6 Example of VBA calling DFX interface
7 Summary

1 Preface

Excel is the leading spreadsheet program in the industry, which is widely used in all professions
and trades. It is the most popular personal computer data processing software.

It is a data computing engine for structured processing. It has agile syntax, grid style script and
complete debugging function. It is specially designed for structured/semi-structured data
processing. It is suitable for multi-step, complex business rules and multiple mixed data sources. It
can provide computing services for massive data with complex business logic.

Excel is used as the front-end for users, and the interface, calculation, business logic and data
access functions provided by esProc SPL language are used to realize the best combination of the
two.

Excel passes the data to Java virtual machine through the XII plug-in, which extends its function. The virtual machine
informs the esProc computing engine. After executing the DFX script, the calculation results are returned according to
the original path and presented in Excel.

For users, on the basis of understanding the structural relationship between excel and esProc, the focus is on how the
front-end excel calls the DFX script to solve the needs of users.

2 Structural relationship

esProc
computing Xll plug in

Java
virtual

machine

dfx
script

Excel

3 Environment setting

A. Java installation

 I. The same architecture is required: Excel and Java JDK are the same x86 or x64 architecture, and can't be
combined in different forms, otherwise exceptions will occur. Run java -version to know if it is an x64
schema.

II. JDK with SPL: if the jvm.dll of Java JDK in regedit of the system registry is not installed or invalid, excel
will load the JDK in esProc(under raqsoft\common\jre\bin\server), that is, the JDK in the registry takes
precedence over the JDK with esProc.

III. user installation of JDK: if the user wants to use the specified version of Java, for the Java JDK is the
installation version or the green version, it is necessary to ensure that the information of JDK in the
registry is valid.

A. Java installation

Let's take win10 jdk1.7.0.71 x86 as an example.
JDK location in the registry: Under HKEY_LOCAL_MACHINE\SOFTWARE
X86：SOFTWARE\\JavaSoft\\Java Runtime Environment
X64：SOFTWARE\\WOW6432Node\\JavaSoft\\Java Runtime Environment
In version 1.7.0.71, the runtimelib value is the location of the jvm.dll file.

When you install multiple versions of Java on your computer, you need to pay attention to the conflict between JDK
versions, which may cause Excel to fail to load plug-ins.

I. excel related files:
 After esProc is installed, the two files related to excel are:
esProc\lib\EsprocXll.jar,
esProc\bin\ExcelRaq.xll。
Excelraq.xll is the excel plug-in of esProc, and their location
cannot be changed, otherwise, the plug-in fails to load.

II. Location setting of DFX file:
Set the storage location of DFX script file to facilitate the call of
SPL. The operation of setting the DFX file path in esProc
interface is as follows:
Menu—>Tool—>Options—>Environment—>
Main path

B. esProc setting

By default, the location of
the DFX file is set in esProc
installation directory
raqsoft\esProc\demo.

B. esProc setting

After opening Excel software, you can
select excelraq.xll file through file - >
Options - > add in - > go to - > Browse -
> add in, check esprocxll in add in, and
excelraq file is enabled.

C. load plug-in

C. load plug-in

4. Operation instructions

DFX interface call Description:
dfx (fmt, arg1,…) Function interface.
Parameter fmt: If it is a DFX file name without suffix, it means calling DFX script file; If it is an expression string starting
with “=”, it means dynamically parsed and evaluated expression. When it is an expression, the number of? included is
the same as that of Arg and corresponds one by one.
Parameter arg1,…: Input parameters can be empty, one or more, but up to 50 parameters, separated by commas.
Parameter types can be string, int, float, double, one-dimensional array, two-dimensional array, etc.
Return type: array structure.

Cell value operation： After selecting a cell, enter similar =dfx("tsum", A1:C3) in the input field，and then click enter to
display the return value in this cell only.

Table filling operation: Select the grid to be filled, enter similar =dfx(“demo”,A1:C3) in the input field, and then press
Ctrl + Shift + enter to achieve automatic filling.

Copy operation: When the DFX script uses the clipboard (s) function and excel calls DFX for execution, you can select
another cell to copy the calculation results in the clipboard.

5. Use of DFX

The following describes how excel calls the DFX script through different operation modes of DFX.

A. Cell value operation

Let's start with two ways to rank:
 I RANK：
 For example, if there are five numbers 100,100, 80, 80, 60, 50, the result is
 First：100,100
 Second: empty
 Third：80
 Fourth：60
 Fifth：50
It can be seen from the above ranking that if there is a parallel ranking situation , several of them are the same, and the
following positions will be vacated.

 II 、China style rank
 The result of the same five numbers ranking is
 First 100,100
 Second: 80
 Third: 60
 Fourth: 50
 From the above result, we can see that the Chinese ranking will not break the ranking because of the same number
ranking, but will be continuous.

A. Cell value operation

For the first type of ranking, excel provides the corresponding interface rank (). For Chinese ranking, VBA script is used.
The code is as follows:

Function cnrank(ByVal nm, ByVal rng As Range)
 Set d = CreateObject("scripting.dictionary")
 For Each rn In rng
 If VBA.IsNumeric(rn.Value) And Len(rn) > 0 Then
 d(rn.Value) = ""
 End If
 Next rn
 arr = d.keys
 d.RemoveAll
 For j = 0 To UBound(arr)
 d(WorksheetFunction.Large(arr, j + 1)) = j + 1
 Next j
 If VBA.IsNumeric(nm) Then
 pm = d(nm * 1)
 Else
 pm = ""
 End If
End Function

A. Cell value operation

Compared with the implementation of VBA code, SPL code is much simpler, as follows:

The first type
Rank

Chinese ranking

B. Table filling operation

Next, the clothing table will be classified and summarized, and the calculation results will be displayed in Excel. Load the
data of clothing.xls, and calculate the sales volume of each branch by type and category.

type category store1 store2 store3 store4 store5

man A 100 200 300 400 350
man B 300 400 500 600 522
man A 800 900 1000 1100 450
man B 200 300 400 500 300
man C 400 500 600 700 891
woman B 600 700 800 900 257
woman C 500 600 700 800 880
woman A 700 800 900 1000 750
woman C 900 1000 1100 1200 440
woman E 280 0 0 360 600

clothing.xls data：

B. Table filling operation

VBA code is implemented as follows:
Sub clothing()
 Set d = CreateObject("scripting.dictionary")
 Application.ScreenUpdating = False

 arr = Sheets(1).[a1].CurrentRegion
 c = UBound(arr, 2)
 For j = 3 To UBound(arr)
 For i = 3 To UBound(arr, 2)
 d(arr(j, 1) & "##" & arr(j, 2) & "##" & arr(2,
i)) = d(arr(j, 1) & "##" & arr(j, 2) & "##" & arr(2,
i)) + arr(j, i)
 Next i
 Next j
 Sheets(2).UsedRange.ClearContents
 Sheets(1).Rows(2).Copy Sheets(2).[a1]
 r = 2
 With Sheets(2)

For j = 0 To d.Count - 1
 arr = Split(d.keys()(j), "##")
 If d.exists(arr(0) & arr(1)) Then
 a = d(arr(0) & arr(1))
 Else
 a = r
 .Cells(a, 1) = arr(0)
 .Cells(a, 2) = arr(1)
 d(arr(0) & arr(1)) = a
 r = r + 1
 End If
 For i = 3 To c
 .Cells(a, i) = d(arr(0) & "##" & arr(1) & "##"
& .Cells(1, i))
 Next i
 Next j
 End With
 Application.ScreenUpdating = True
End Sub

B. Table filling operation

Due to the lack of grouping interface in VBA, the code details need to be implemented by itself. However, SPL is much
more comprehensive and easy to implement for such problems. The script code of using clothing.dfx is as follows:

 A

1 =file("D:/dev/clothing.xls").xlsopen()

2 =A1.xlsimport@t(;A1(1).stname, 1)

3 =A2.group(type, category)

4 =A3.new(type, category, ~.sum(#3):store1,

~.sum(#4):store2,~.sum(#5):store3,~.sum(#6):store4,~.sum(#7):store5)

5 >A1.xlsclose()

6 return A4

B. Table filling operation

Operating instructions: In Excel, select A1: G8 area first,
and then input =dfx(“clothing”) in the input box, and
press Ctrl + Shift + enter at the same time to realize
automatic filling, as shown in the left figure:

The histogram can also be inserted to make the
calculation results more intuitive.

C. Copy operation

Still use the above clothing test data, only the DFX script adds the copy function.
The script code of clipboard.dfx is as follows:

Operating instructions: In Excel, first select cell A1, and then
input in the input box: =dfx("clipboard") , click enter, and
then paste from A2 with ctrl+v. The result is as follows:

 A

1 =file("D:/dev/clothing.xls").xlsopen()

2 =A1.xlsimport@t(;A1(1).stname, 2)

3 =A2.group(type, category)

4 =A3.new(type, category, ~.sum(#3):store1,

~.sum(#4):store2,~.sum(#5):store3,
~.sum(#6):store4,~.sum(#7):store5)

5 >A1.xlsclose()

6 =clipboard(export@t(A4))

Copy calculation
result to clipboard

D. Pass parameters to DFX

Pass different types of parameters to the DFX script. Use the tsum.dfx script code as follows:

 A B C D E

1 0 0 0 0

2 if (ifa(arg1)) >A1=arg1.sum() else if(ifnumber(arg1)) >A1=arg1

3 else >A1=len(arg1)

4 if (ifa(arg2)) >B1=arg2.sum() else if(ifnumber(arg2)) >B1=arg2

5 else >B1=len(arg2)

6 if (ifa(arg3)) >C1=arg3.sum() else if(ifnumber(arg3)) >C1=arg3

7 else >C1=len(arg3)

8 if (ifa(arg4)) for arg4.count()

9 if (ifa(arg4(B8))) >D1=D1+arg4(B8).sum()

10 return A1+B1+C1+D1

D. Pass parameters to DFX

The parameters passed are integer, single row multi value, single column multi value and multi row multi column value.

For the date type, you need to convert it to a string. The code is as follows:
=dfx("testDate",23.33,13,"2011-02-03")
=dfx("testDate",A1,C1,TEXT(B1,"yyyy-mm-dd")), where B1 is date type data 。

6. Example of VBA calling DFX interface

The SPL interface is invoked in the VBA script to realize their interaction. The tdemo.dfx script code is as follows:

 A

1 =create(age, name,pid,work)

2 >A1.insert(0,11,"asp", 100, "techer")

3 >A1.insert(0,12,"php", 200, "manager")

4 >A1.insert(0,42,"jsp", 300, "java")

5 >A1.insert(0,43,"java", 400, "help")

6 =clipboard(export@t(A1))

7 return A1

The functions Run() ExecuteExcel4Macro() of application are mainly used.

A. Application.Run() invocation

Operation steps：

A：Alt+F11 open VBA compiler，right-click on
ThisWorkbook and select insert module.

B. Enter the following sub test() function code,
which displays the result in Excel.

C: Execute function test(), VBA script
automatically fills the result in A1: D5.

A. Application.Run() invocation

VBA script calls DFX script Application.Run() ，and outputs the result to grid:

Display
result

Call dfx script

B. Application.ExecuteExcel4Macro() invocation

The return value of the DFX script called above is a list. If the return value of DFX is a single value, the ExecuteExcel4Macro
interface can be used. The VBA script implementation code is as follows:

Note： The quotation mark in the passing parameter string of DFX interface needs to be replaced by double quotation
mark.

Sub Test()
 With Sheets(5)
 Cells(6, 1) = Application.ExecuteExcel4Macro("dfx(""tdemo"")")
 End With
End Sub

7 Summary

After excel integrates esProc, users can implement DFX scripts with different functions through SPL language
according to their own business requirements. Excel calls these DFX scripts, and SPL returns the calculated data,
which can be further processed in Excel or presented after report processing, and can realize different application
requirements interactively.

In the face of various complex business logic, different data source processing, big data computing, etc., esProc
has its own unique features, which can also make up for the shortcomings of Excel in these aspects. Compared
with VBA development, SPL language has stronger adaptability, more professional business processing and easier
to use. At the same time, with the help of the ease of use of Excel operation, reporting and visualization
functions, the two can realize complementary advantages, give full play to their own advantages, and make the
data presentation more professional, intuitive and colorful.

