
Order related

Ordered set

Ordered loop

Iteration function

Positioning calculation

Sorting and alignment

1

2

3

4

CONTENTS

5

01
Ordered set

Ordered set Access sequence by sequence number

Sequence Requirement Expression Result

[2,3,5,10,15,22,4,56]

Extract the third member A1(3) 5

Extract the first and fourth members A1([1,4]) [2,10]

Extract the first three members A1(to(3)) [2,3,5]

Extract the second member A1.m(2) 3

Extract the second to fourth members A1.m(2:4) [3,5,10]

Extract the last member A1.m(-1) 56

Extract the first two members, the fifth member, and

the 7th to last members
A1.m(:2,5,7:) [2,3,15,4,56]

Sequence tables are structured sequences

Sequence table data

Requirement Expression

Extract the third member A1(3)

Extract the first and fourth members A1([1,4])

Extract the first three members A1(to(3))

Extract the second member A1.m(2)

Extract the second to fourth members A1.m(2:4)

Extract the last member A1.m(-1)

Extract the first two members, the fifth member, and

the 7th to last members
A1.m(:2,5,7:)

Ordered set

Extract the median of English score

A B

1 =file("E:/txt/students_score.txt").import@t()

2 =A1.(English).sort() /Sort by English score

3 =A2.len()+1 /Number of set members

4 =A2([A3\2,(A3+1)\2]).avg()
/If even number, take the mean value of the middle two; If

odd number, take the middle number.

A1~A4 results:

Ordered set

A.pos(x)，where x is a sequence, get the position of x members in A

Number Member

1 16

2 22

3 5

4 6

5 2

6 7

x=[22,6,2]

A.pos(x)

2

4

5

A.pos(x), equivalent to the inverse operation of A(p)=x.

Ordered set

Query the rankings of "Tyler" and "Sean" in total score

A B

1 =file("E:/txt/students_score.txt").import@t()

2 =A1.sort(-(Chinese+Math+English)) /Sort according to the total score from high to low

3 =A2.(Name).pos(["Tyler","Sean"]) /Query the rankings of“Tyler”and“Sean”

A1~A3 results:

Ordered set

Filter for records containing null values

A

1 =file("E:/txt/EMPLOYEE_nan.txt").import@t()

2 =A1.select(~.array().pos(null)>0)

Result

Ordered set

Set union

Part of Employee Data Table
A2&A3

A.select(GENDER==M||DEPT==“Sales”)

A.select(DEPT==“Sales”)

Ordered set

A.select(GENDER==“M”)

If the order is different, two sequences are not equal

Sequence Calculation Description Result

A1=[1,2,3]

A2=[1,3,2]

A3=[3,1,4,5]

A1==A2
Determine whether the

sequence is equal
false

A1^A3 Intersection of A1 and A3 [1,3]

A3^A1 Intersection of A3 and A1 [3,1]

A1&A3 Union of A1 and A3 [1,2,3,4,5]

A3&A1 Union of A3 and A1 [3,1,4,5,2]

Determine whether members are the same

Sequence Calculation Description Result

A1=[1,2,3]

A2=[1,3,2]

A3=[3,1,4,5]

A1.eq(A2)
Determine whether members

are the same

true

A1.eq(A3) false

A2&A3 A.select(GENDER==M||DEPT==“Sales”)

A.eq(B)

true Table

Ordered set

02
Ordered loop

Ordered loop - Orderly traversal

Records of even-numbered positions (A.select(#%2==0))

Reference of position

Employee data

A.(x),A.(x[])

Sequence Function Expression Result Description

[2,3,5,6]

A.(~) ~ [2,3,5,6] Return the original sequence

A.(~[-1]) ~[-1] [null,2,3,5]
Return a member whose position from the current

member is - 1

A.(~[2]) ~[2] [5,6,null,null]
Return a member whose position from the current

member is 2

Function Expression Description

A.(prod) prod Prod field

A.(prod[-1]) prod[-1] Members with a position of - 1 from the members of the prod field

A.(prod[:]) prod[:] A sequence consisting of a sequence of all prod members

A.(prod[:0]) prod[:0] A sequence of members containing prod from start to current position Data

Ordered loop - Cross-row reference

Ordered loop Find out the maximum number of days in which stock1001 price continue to rise

A

1 =file("E:/txt/stock1001_price.txt").import@t()

2 =a=0,A1.max(a=if(CL>CL[-1],a+1,0))

A1, A2 results

Calculate the average of stock1001 price for five consecutive trading days

A

1 =file("E:/txt/stock1001_price.txt").import@t()

2 =A1.derive(CL[-5:0].avg():5_avg)

A1,A2 results

Ordered loop

Calculate cumulative sales of prod1

A

1 =file("E:/txt/prod1.txt").import@t()

2 =A1.derive(sum(sales[:0]):add_up)

A1,A2 results

Ordered loop

Find out records of 10% more sales for each product than last month

A B

1 =file("E:/txt/prod.txt").import@t()

2 =A1.sort(prod,month) /Sort by prod and month

3 =A2.select(if(prod==prod[-1],sales/sales[-1]>1.1)) /Find the result

A1~A3

results

Ordered loop

Calculate the average sales of each product in three days

A

1 =file("E:/txt/prod.txt").import@t()

2 =A1.sort(prod,month)

3 =A2.derive(if(prod==prod[-1]&&prod==prod[1],sales[-1:1].avg()):moving_avg)

A1~A3

results

Ordered loop

Calculate the cumulative sales of each product

A

1 =file("E:/txt/orders.txt").import@t()

2 =A1.sort(prod,month)

3 =A2.derive((x=if(prod!=prod[-1],#,x),sum(sales[x-#:0])):add_up)

A1~A3 results

Ordered loop

03
Iteration function

Iteration function Rethinking Aggregation Operation

SUM：Set an initial value of 0, then traverse each member of the set, adding

the member value to the initial value each time until the members are traversed.

MAX： Set the initial value to be infinitesimal, traverse the members of the set,

and replace the initial value for each member larger than the initial value until

the traversal is completed.

MIN： Like MAX, the initial value and the direction of comparison are reversed.

a=initial value，~= current member ，~~= current initial value

In this way, these calculations can be completed.

3

5

6

2

1

9

8

The iteration process of sum ():

~ ~~

Initialization 0

Step 1 3 3

Step 2 5 8

Step 3 6 14

Step i A(I) ~~+A(i)

Step 7 8 34
Result：34

More general iteration function can be abstracted: iterate(x,a) Iteration function

Same row results are the same, with 2,3,4,6,7 rows as follows

Implementing these iteration functions with iterate function

A B

1 [2,4,6,11]

2 =A1.sum() =A1.iterate(~~=~~+~,0)

3 =A1.min() =A1.iterate(if(~<~~,~,~~),inf())

4 =A1.max() =A1.iterate(if(~>~~,~,~~),-inf())

5 =demo.query("select * from EMPLOYEE")

6 =A5.maxp@a(EID) =A5.iterate(if(!~||~.EID>~~.EID,~,if(~.EID==~~.EID,~~|~,~~)),null)

7 =A5.maxp@a(SALARY) =A5.iterate(if(!~||~.SALARY>~~.SALARY,~,if(~.SALARY==~~.SALARY,~~|~,~~)),null)

Iteration function

Result

Fibonacci sequence

A

1 =10.iterate([~~(2),(~~(1)+~~(2))],[1,1])

~ ~~

Initialization [1,1]

Step 1 1 [1,2]

Step 2 2 [2,3]

Step 3 3 [3,5]

Step i i [~~(2),~~(1)+~~(2)]

Step 10 10 [89,144]

Iteration function

Approximate solution of lnx+2x-6=0 by method of bisection

A B

1 func return ln(A1)+2*A1-6

>y=1 1e-10

2 =1000.iterate((x=(~~(1)+~~(2))/2,y=func(A1,x),if(y>0,[~~(1),x],[x,~~(2)])),[0,3],abs(y)<B2)

3 =x

4 =func(A1,x)

~~ x=(~~(1)+~~2)/2 y=ln(x)+2*x-6 abs(y)

Initialization [0,3]

Step 1 [0,3] 1.5 -2.5945 2.5945

Step 2 [1.5,3] 2.25 -0.6891 0.6891

Step 3 [2.25,3] 2.625 0.2151 0.2151

Step 4 [2.25,2.625] 2.4375 -0.234 0.234

Step i ~~ (~~(1)+~~(2))/2 ln(x)+2*x-6 abs(y)

Step n ~~ (~~(1)+~~(2))/2 ln(x)+2*x-6
if abs(y)<1e-10

break

The Iterative process of A2 ：

Iteration function

Calculate the cumulative sales of a salesperson

A B

1 =demo.query("select ORDERID,SELLERID,AMOUNT,ORDERDATE from SALES ")

2 =A1.select(SELLERID==10).sort(ORDERDATE) /Select salesman No. 10 and sort by ORDERDATE

3 =A2.derive(iterate(~~+AMOUNT,0):cum_sum) /Using iterate function to calculate cumulative value

A1 A2 A3

Results

Iteration function

Calculate the cumulative sales of all salesmen

A B

1 =demo.query("select CLIENT,SELLERID,AMOUNT,ORDERDATE from SALES ")

2 =A1.sort(SELLERID,ORDERDATE) /Sort by SELLERID and ORDERDATE

3 =A2.derive(iterate(~~=~~+AMOUNT,0;SELLERID):cum_sum)

4 =A2.derive(cum(AMOUNT;SELLERID):cum_sum)

/A3 Using iterate function to calculate cumulative value ；A4：cum(x;G) When G changes, x starts to calculate again.

Results A1 A2 A3、A4

Iteration function

Ranking a class of students by score

A B

1 =file("E:/txt/students_c.txt").import@t()

2 =A1.select(CLASS==1).sort(-SCORE) /Sort in reverse order according to SCORE

3 =A2.derive(iterate((x=x+1,if(SCORE==SCORE[-1],~~,x)),(x=0)):RANK)

/Initialize x=0，iterate x+1，when SCORE is the same, ranking is unchanged; If SCORE is different, ranking is x.

Results

A1 A2 A3

Iteration function

Ranking students by class and score

A B

1 =file("E:/txt/students_c.txt").import@t()

2 =A1.sort(CLASS,-SCORE) /Sort in reverse order according to CLASS and SCORE

3 =A2.derive(iterate((x=x+1,if(SCORE==SCORE[-1],~~,x)),(x=0);CLASS):RANK)

4 =A2.derive(rank(SCORE;CLASS):RANK)

/The results for A3 and A4 are the same，

A3:Initialize x=0，iterate x+1，when SCORE is the same, ranking is unchanged; If SCORE is different, ranking is x. When CLASS changes, x is reinitialized.

A4:when SCORE is the same, ranking is unchanged; If SCORE is different, Ranking equals the current ranking plus the number of previous rankings，When

CLASS changes, rank from 1.

Results

A1 A2 A3、A4

Iteration function

04
Positioning Calculation

Positioning calculation A.pselect(~>10)

No. Sequence Expression Judgement Option Result

1 7

~>10

False

Null 2 2 15 True

3 8 False

4 9 False

@a [2,5,7]
5 23 True

6 5 Falese

7 22 True

A.pselec(GENDER:”M”,DEPT:”Sales”)

=A.pselect(GENDER==”M”&&DEPT==”Sales”)

Function Description

A.pselect@a(EID>10&&EID<=20) Find out positions where EID is greater than 10

and less than or equal to 20

A.pmax(EID) Find out position of maximum EID

A.pmin@a(SALARY) Find out position of minimum salary

A(A.pmin@a(SALARY)) Get the records corresponding to the minimum

value

Partial functions that are position related

Data

Positioning calculation

Calculate the day-to-day rise of the stock price over 100 yuan in a month

(Keep the stock price at 1st of the month)

A B

1 =file("E:/txt/stock_price.txt").import@t()

2 =A1.sort(stockid) /Sort by stockid

3 =A2.pselect@a(CL>100) /Find out record position where the stock price is above 100

4 =A2.calc(A3,if(day(DT)==1,~.CL,~.CL-~[-1].CL)) /Calculate increase rate using position

A1~A4 results:

Positioning calculation

Calculate the daily growth rate of stock1001 at its first peak price in a month

(Keep the stock price at 1st of the month)

A B

1 =file("E:/txt/stock1001_price.txt").import@t()

2 =A1.pmax(CL) /Find the position of highest price

3 =A1.calc(A2,if(day(DT)==1,A1.CL,A1.CL/A1.CL[-1]-1)) /Calculate the growth rate of the day

A1~A3 results:

Positioning calculation

05
Sorting and alignment

Sorting and alignment Randomly divide the data into 30% and 70% as training set and test set

A B

1 =file("E:/txt/Employees.txt").import@t()

2 =A1.sort(rand())(to(A1.len()*0.3)) /Disturb the order of data, take 30%

3 =A1\A2 /Difference set

1 2 3 4 5 6 7

7 15 8 9 23 5 22

1 2 3 4 5 6 7

7 15 8 9 23 5 22

1 2 3 4 5 6 7

7 15 8 9 23 5 22

sort vs psort

Sort is to sort sequence members and

return sequence members；

Psort is to sort sequence members and

return sequence of member positions;

So A(C)=B

Sorting and alignment

No .

Member

No .

Member

No .

Member

Sequence A

Sequence B

Sequence C

sort

psort

Calculate the day's rise of the three highest prices of stock1001

A B

1 =file("E:/txt/stock1001_price.txt").import@t()

2 =A1.psort@z(CL) /Return the sequence of No.s after reverse sorting

3 =A2(to(3)) /Take the first three

4 =A1.calc(A3,if(day(DT)==1,CL,CL/CL[-1]-1)) /Calculate the increase rate

A1~A4 results:

Sorting and alignment

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

2 5 3 4 7 1 6

No.

Member

Sequence A

ranks

No.

Member

psort
No.

Member

Sequence D
No.

Member

Sequence C

No.

Member

Sequence C

Sequence B

psort vs ranks

The results of sorting can be reused by psort function, and sorting and ranking can be

obtained by one sorting.

Sorting and alignment

1 2 3 4 5 6 7

7 15 8 9 23 5 22

1 2 3 4 5 6 7

2 5 3 4 7 1 6
to(Alen())

1 2 3 4 5 6 7

6 1 3 4 2 7 5

B.run(C(~)=#)

Ranking with duplicate values

A B

1 [7,15,8,9,23,5,22,5,5,5]

2 =A1.psort() /Return the sequence of No.s after reverse sorting

3 =to(A1.len())

4 >A2.run(if(A1(~)!=A1(~[-1]),A3(~)=#,A3(~)=A3(~[-1]))) /If duplicated, the ranking remains unchanged

5 =A1.ranks() /Calculate ranks

A3 when A3 executed A3 after A4 executed

Sorting and alignment

A1 A2 A5

Use the psort function to create an index. Check the information that Name is “Andy".

A B

1 =file("E:/txt/employees.txt").import@t(Name,Gender,BasePay) /Employee table

2 =A1.psort(Name) /Return the sorted No.s

3 =A1(A2) /Return the sorted sequence

4 =A3.pselect@b(Name:“Andy") /Look up“Andy”by method of bisection

5 =A2(A4) /Index position

6 =A1(A5) /Return the needed data

Create index

Index search

Original table Index table

Position in index

table

Position in

original table

Result

Sorting and alignment If you don't want to disrupt the order of the original data,

 use method of bisection to find the data

Sort the population and GDP rankings according to the designated province sequence

A B

1 [beijing,tianjin,heilongjiang,jilin,liaoning,neimenggu,xinjiang,ningxia,gansu,qinghai,shaanxi,xizang,sichu

an,chongqing,guizhou,yunnan,shanxi,hebei,shandong,henan,anhui,jiangsu,shanghai,hubei,hunan,jiang

xi,zhejiang,fujian,taiwan,guangxi,guangdong,hainan,xianggang,aomen]

/Provinces in geographical order

2 =file("E:/txt/population.txt").import@t() /Population ranking table of provinces

3 =file("E:/txt/GDP.txt").import@t() /GDP ranking table of provinces

4 =A1.(A2.select@1(province==A1.~)) /Filter population table in a specified

order

5 =A1.(A3.select@1(province==A1.~)) /Filter GDP table in a specified order

6 =A2.align(A1,province)

7 =A3.align(A1,province)

A1~A7 results:
The same as A4

The same as A5

Sorting and alignment

Calculating per capita GDP of provinces

A B

1 [beijing,tianjin,heilongjiang,jilin,liaoning,neimenggu,xinjiang,ningxia,gansu,qinghai,shaanxi,xizan

g,sichuan,chongqing,guizhou,yunnan,shanxi,hebei,shandong,henan,anhui,jiangsu,shanghai,hub

ei,hunan,jiangxi,zhejiang,fujian,taiwan,guangxi,guangdong,hainan,xianggang,aomen]

/Provinces in geographical order

2 =file("E:/txt/population.txt").import@t() /Population ranking table of provinces

3 =file("E:/txt/GDP.txt").import@t() /GDP ranking table of provinces

4 =A2.align(A1,province) /Filter population table in a specified order

5 =A3.align(A1,province) /Filter GDP table in a specified order

6 =A1.new(~:province,A5(#).#2/A4(#).#2*10000:Per_capita_GPD) /The result is obtained by alignment calculation.

Result A3 lacks GDP data for Hong Kong, Macao and

Taiwan, so null is included in the results.

Sorting and alignment

THANKS

