

@ oo
CONTENTS gy =

@ Same dimension Main & Sub table
@ Non-Equijoein

Understanding Join

SPL JOIN

SQL Join

1. Cartesian product

Employee Department IEIE

1 David 1 Sales
m NAME | DEPT D | NAME
I 1 David 1 2 R&D
David 1 Sales _

5 Daniel 2 2 Daniel 2 1 Sales
2 R&D 2 Daniel 2 2 R&D

3 Andrew 1
3 Andrew 1 1 Sales
3 Andrew 1 2 R&D

2. Conditional filtering

o e Locer Lo e

1 David 1 Sales Employee.DEPT = mm
1 Bavid <t 2 R&DB Department.ID David Sales

2 Daniel 2 = Sales || — Daniel 2 2 R&D

2 Daniel 2 2 R&D 3 Andrew 1 1 Sales

3 Andrew 1 1 Sales

3 Andrew 1 2 R&B

SPL JOIN

SQL Join

Employee Department
| ID | NAME | DEPT JOIN m NAME Employee | Department
1 David 1 1 Sal i
ales [1, David, 1] [1, Sales]
: —) I
2 Daniel 2 2 R&D [2, Daniel, 2] [2, R&D]
3 Andrew 1

[3, Andrew, 1] [1, Sales]

SPL joins two or more sets and takes the binary group composed of set members as members instead of
simply expanding the data structure of all sets. SPL is not only more in line with the concepts and intentions
of JOIN, but also clearer and more concise than SQL.

SPL JOIN

SQL Join

Common Types of Equivalent JOIN

5

Foreign key Same Main & Sub
table Dimension table
Table

In reality, most JOINs are equivalent JOINs, and the above three JOINs have covered most cases of

equivalent JOINSs.
SPL makes full use of these features to create simpler writing formats and achieve more efficient

computing performance.

SPL JOIN

Foreign key table

Employee table department table

id % Primary key Id % Primary key

name name
nationality manager
department

Some fields of Table A are associated with the primary key of Table B. The field associated with the primary
key of table B in table A is called the foreign key of A to B, and B is also called the foreign key table of A. The
foreign key table is a many-to-one relationship.

SPL JOIN

Same Dimension Table

employee table 101

id % Primary key « » id * Primary key
name allowance
salary

The primary key of table A is associated with the primary key of table B. A and B are called the same

dimension tables. The same dimension table is a one-to-one relationship, and the relationship with the same
dimension table is equal.

SPL JOIN

Main & Sub table

Orders table(Main table) 1N OrderDetail table(Sub table)

id % Primary key « > id % Primary key
customer NO * Primary key
date product

price

The primary key of table A is associated with part of the primary keys of table B. A is called the main table
and B is called the sub-table. The main and sub-table is a one-to-many relationship.

SPL JOIN

Process for using Joins

Determine Join type Select the Join Function Single table query operation

First, the type of Join is determined. Use the corresponding function After joining, members of other
Common types are: foreign key table, according to the Join type. Detailed tables can be accessed in the
same dimension table and main & information will be provided in later form of “field. Property”.

sub table. chapters.

We changed the view on JOIN operation, abandoned the idea of Cartesian product, and regarded multi-table
Join operation as a slightly more complex single-table operation. In this way, we can basically eliminate the Join
from the most common equivalent JOIN operation, and it is much simpler to write and understand.

Foreign Key table

SPL JOIN

Foreign key table — Foreign key Objectification

By objectifying the foreign key, the foreign key field can be converted into the corresponding

reference in the foreign key table, so that it can be processed as a single table.
(1) Single foreign key

Please select all the employees in the product department.

employee table department table

id % Primary key id % Primary key
name name
nationality manager

department

SPL JOIN

Foreign key table — Foreign key Objectification

Employee table

m NAME | NATIONALITY | DEPARTMENT

Rudy American Product

lForeign key objectification

“ NAME | NATIONALITY | DEPARTMENT “ NAME | MANAGER

Rudy American [11, Product, Robert] Product Robert

After foreign key objectification, department. name in the employee table is the name of the

Department to which it belongs. The complete SPL is as follows:

A B
1 =db.query("select * from employee") =db.query("select * from department")
2 =Al.switch(department, B1:id) =A2.select(department.name=="Product")

SPL JOIN

Foreign key table — Foreign key Objectification

(2) Single-layer multiple foreign keys

The area field of the employee table is also a foreign key to the area table. Please select the

employees in Beijing's product department.

id * Primary key id % Primary key
name / hame
department manager

area
\ area table

id % Primary key
name

SPL JOIN

Foreign key table — Foreign key Objectification

EMPLOYEE
D | NAME | DEPARTMENT | AREA |
103 Rudy

lForeign key objectification 1

“ NAME DEPARTMENT AREA

103 Rudy [11,Product,Robert] [101, Beijing]

The complete SPL is as follows:

A B
1 =db.query("select * from employee") =db.query("select * from department")
=db.query("select * from area")

3 =Al.switch(department, B1l:id; =A3.select(department.name=="Product”
area,A2:id) && area.name=="Beijing")

SPL JOIN

Foreign key table — Foreign key Objectification

(3) Multi-layer foreign key

Which American employees have a Chinese manager?

employee table department table

id % Primary key id Primary key
name name
nationality manager

department

SPL JOIN

Foreign key table — Foreign key Objectification

For multi-layer foreign key join, only need to objectify the foreign key layer by layer.

department

“ NAME MANAGER

Product Robert
Foreign key objectification ‘

D | NAME MANAGER

11 Product [101, Robert, Chinese, Product]

employee

| ID | NAME | NATIONALITY DEPARTMENT

103 Rudy American Product
Foreign key objectification l

“ NAME | NATIONALITY DEPARTMENT

Rudy American [11,Product,[101,Robert,Chinese,Product]]

SPL JOIN

Foreign key table — Foreign key Objectification

The complete SPL is as follows:

A B
1 =db.query("select * from employee") =db.query("select * from department")
2 =Bl.switch(manager, Al:id) =Al.switch(department, A2:id)

=B2.select(nationality=="American” &&
department.manager.nationality=="Chinese")

SPL JOIN

Foreign key table — Cases unsupported by Foreign key Objectification

(1) Foreign key pointing to blank record

When the direction of the Department is empty, objectification will cause the code value
of the field to be lost.

employee table department table

id % Primary key id * Primary key
Nname name
nationality manager

department

SPL JOIN

Foreign key table — Cases unsupported by Foreign key Objectification

Solution 1: Do not use foreign key objectification, add the required foreign key table fields.

EMPLOYEE DEPARTMENT

| ID | NAME | NATIONALITY | DEPARTMENT “ NAME | MANAGER

103 Rudy American Product Robert

Add the foreign key table fields

“ NAME | NATIONALITY | DEPARTMENT DEPT MANAGER

103 Rudy American Product Robert

The complete SPL is as follows:

A B
1 =db.query("select * from employee") =db.query("select * from department")
2 =Al.join(department, B1l:id, =A2.select(department.name=="Product")

name:dept, manager)

SPL JOIN

Foreign key table — Cases unsupported by Foreign key Objectification

Solution 2: Foreign keys are still objectified, but foreign key objects are generated on new fields.

EMPLOYEE DEPARTMENT

| ID | NAME | NATIONALITY | DEPARTMENT “ NAME | MANAGER

103 Rudy American Product Robert

Added foreign key obiject field

m NAME | NATIONALITY | DEPARTMENT DEPT

103 Rudy American [11,Product,Robert]

The complete SPL is as follows:

A B
1 =db.query("select * from employee") =db.query("select * from department")

2 =Al.join(department, B1:id, ~:dept) =A2.select(department.name=="Product")

SPL JOIN

Foreign key table — Cases unsupported by Foreign key Objectification

(2) Multi-field foreign key

Please choose the names of the products whose order payment is greater than 500 in 2018.

OrderPayment table OrderDetail table Product table
id * Primary key / id % Primary key id * Primary key
order /v NO % Primary key / name

orderno product

date price

SPL JOIN

Foreign key table — Cases unsupported by Foreign key Objectification

OrderDetall Forelgn key OrderDetall

10248 1 238 -\ 10248 [17,cake] 238
10248 2 18 475 10248 2 [18,apple] 475
OrderPayment
NN T [

101 10248 2012-07-26

103 10248 2 2012-08-15 Add the foreign key object
OrderPayment
N 2 e N =7 T,

10248 2012-07-26 [10248,1, [17,cake],238]

103 10248 2 2012-08-15 [10248,2, [18,apple],475]

Foreign key table — Cases unsupported by Foreign key Objectification

SPL JOIN

The complete SPL is as follows:

4

A
=db.query("select * from OrderPayment")

=db.query("select * from Product")

=Al.join(order:orderno,B2:id:no,~:detail)

=B3.select(detail.price>500)

B
=db.query("select * from OrderDetail")
=B1.switch(product, A2:id)
=A3.select(year(date)==2018)

=A4.new(id,date,detail.product.name:na
me,detail.price:price)

SPL JOIN

Foreign key table - Conditional cases of foreign key table

Query the grades of the students in Class One.

Student

ID » ID * Primary key
Class » Class % Primary key
Course Name

Score Age

SPL JOIN

Foreign key table - Conditional cases of foreign key table

Solution 1: Filter the foreign key table first, then filter the join.

Student Student
'ID | Class | Name | Age RS D | Class | Name | Age
1 Class1 David 16 1 Class1 David 16

2 Class2 Daniel 17

Score

m Class | Course | Score

1 Class1 Math
2 oss o palel L

Join filtering

Score

m Class | Course | Score

1 Class 1 Math

SPL JOIN

Foreign key table - Conditional cases of foreign key table

The complete SPL is as follows:

A
=db.query("select * from Score")
=db.query("select * from Student")
=A2.select(Class=="Class 1")
=Al.join@i(ID, A3:ID)

A W N P

A3: Atfter filtering classes, multiple primary key Joins (class + student ID) become single primary key Join
(student ID).
A4: The join@i option is used to delete the record when the corresponding value is not found for join

filtering.

SPL JOIN

Foreign key table - Conditional cases of foreign key table

Solution 2: If the condition is for the primary key, you can also use multi-field join filtering.

Score Student
DEEEED o DT
Class1 Math filtering . 1 Class1 David 16
1 Class1 English 94 2 Class2 Baniel 14

2 Class2 Math L

N

Class2 English 95

Join fields are the two fields of student ID + class, which can specify the class as a constant condition (class 1)

when joining, thus realizing join filtering.

SPL JOIN

Foreign key table - Conditional cases of foreign key table

The complete SPL is as follows:

A
1 =db.query("select * from Score")
2 =db.query("select * from Student")
3 =Aljoin@i(ID:"Class 1", A2:ID:Class)

Direct multi-primary key join can keep the index of student table, thus

ensuring the speed of join.

Same dimension Main & Sub table

SPL JOIN

Same dimension Main & Sub table

Same dimension table and
Main & Sub table

There are many similarities between the same
dimension table and the main & sub table, so

they are explained in the same chapter.

The relationship between the same dimension
tables is equal. Once the main & sub tables
are transformed into the same dimension

tables, they can be operated as single table.

Same dimension Main & Sub table 5

3.1 Same dimension table

The total income (plus allowances) of all employees (including managers) should be counted.

employee table 11 manager table

id % Primary key « > id % Primary key
name allowance
salary

Employee table is used to store employee information. Managers are also employees. Managers have

more attributes than ordinary employees and use a manager table to save them. The two tables share
the same employee number.

SPL JOIN

Same dimension Main & Sub table

In case of the same dimension table type, Join directly according to the primary key.

employee manager
“ “
Robert 8000 3000
Join by the primary key
[101,Robert,8000] [101,3000]
The complete SPL is as follows:
A B
1 =db.query("select * from employee") =db.query("select * from manager")

=A2.new(employee.id,employee.name,empl

2 join(Al:employee,id;B1:manager,id)
oyee.salary+manager.allowance)

SPL JOIN

Same dimension Main & Sub table

3.2 Single Main & Sub table

Example: The primary key of the order table is id, and the primary key of the order detail table is
ID and No. The primary key of the former is part of the latter.
Now we need to calculate the total amount of each order.

Orders table 1- N OrderDetail table

id s Primary key < > id % Primary key
customer NO % Primary key
date product

price

The relationship between main and sub table is unequal, and the reference of main table from sub
table is similar to that of foreign key table.

Here we mainly introduce how to refer to sub tables from the main table.

SPL JOIN

Same dimension Main & Sub table

Orders OrderDetall
__id_|customer | date __id_| no | product | price
10248 VINET 2012-07-04 10248 1 17 238

10248 2 18 475

Join by the primary key of main table

[10248,VINET,2012-07-04] [10248,1,17,238]
[10248,VINET,2012-07-04] [10248,2,18,475]

Grouping and aggregation

10248 713

SPL JOIN

Same dimension Main & Sub table

The complete SPL is as follows:

A B
1 =db.query("select * from Orders") =db.query("select * from OrderDetail")
2 =join(Al:Order,id;B1:Detalil,id) =A2.groups(Order.id:order,Order.custome

r.customer; sum(Detail.price):price)

If the order and order details are orderly for id, we can use join@m to merge them

in order to improve the speed and performance of join.

A
2 =join@m(Al:Order,id;B1:Detall,id)

SPL JOIN

Same dimension Main & Sub table

3.3 Multiple Main & Sub tables

If the order table also has a sub table to record the repayment. Now we want to know which orders haven't been

paid back, that is, orders whose cumulative amount of payment is less than the total amount of the order.

OrderDetail table N Orders table N OrderPayment table

id % Primary key <« id * Primary key «— id

NO % Primary key customer date
product date amount
price

It is not right to simply join the three tables. The order details table and the order payment table will have a many-to-many
relationship.
Id is not the only primary key in the order detail table and the order payment table. How to turn them into the unique

factual primary key?

SPL JOIN

Same dimension Main & Sub table

OrderDetall
Sub table
“- arouping by i
)
10248 238 [[10248,1,17,238],[10248,2,18,475]]
10248 2 18 475 Id becomes the
primary key

OrderPayment

Sub table
- id | date | amount JERIICER member

10248 2012-07-26 238 === [[10248,2012-07-26,238],[10248,2012-

08-15,475]]
10248 2012-08-15 475
Id becomes the
primary key
Orders
| id | customer | date |
10248 VINET 2012-07-04 l Join by the primary key id of the main table

[10248,VINET, 2012-07-04] [[10248,1,17,238],...] [[10248,2012-07-26,238],...]

SPL JOIN

Same dimension Main & Sub table

The complete SPL is as follows:

A B
1 =db.query("select * from Orders") =db.query("select * from OrderDetail")
2 =db.query("select * from OrderPayment")
3 =B1l.group(id) =A2.group(id)
4 =join(Al:Orders,id; A3:Detall, id; =A4.new(Orders.id:id,Orders.product:pr
B3:Payment, id) oduct,Detail.sum(price):price,Payment.

sum(amount):amount)
5 =B4.select(amount<price)

When sub tables are grouped by the primary key id of the main table, the id becomes the primary key in

fact. Then we can treat the same dimension main & sub table as the same dimension table.

SPL JOIN

Same dimension Main & Sub table

3.4 The combining of foreign key table, same dimension table and main & sub table

Query the order information that includes "water" in the name of the commodity, the order was placed in January 2019, the total

amount of the order was more than 200 yuan, no instalment was used, and the evaluation was five stars.

1: 1
7 .

ID *\ *<—>ID % «— ID *4——>ID
Name ProductlD 4 CustomerID Channel Score

Producer Count SalelD Date Date

Date Amout Date Instalments Comment

This example contains both the same dimension table and the main & sub table, as well as the foreign key table.
The problem needs to be solved by disassembling: first, the foreign keys are objectified, then the sub tables are

grouped according to the primary key of the main table, and finally, join the same dimension tables.

SPL JOIN

Same dimension Main & Sub table

Foreign key

“ objeciicator “

10248 m— 10248 [1, cake,...]

Grouping by id
“ ProductID | Count | Amout for sub table member

10248 [1,cake,...] T (10248 [1,...1,17,238],[10248,[2, ...],18,475]]

10248 [2,apple,...] 18 475

Evaluation

Orders Detail Payment

©

Join by primary key of main table

[10248,VINET, 2012- [[10248,[1,...],17,238],] [10248,3,2012-07-04,0] [10248,5,2012-07-
07-04] 10248,[2,...1,18,475]] 16,"Good”]

SPL JOIN

Same dimension Main & Sub table

The complete SPL is as follows:

A B
1 =db.query("select * from Orders") =Al.select(year(Date)==2019&&month
(Date)==1)
2 =db.query("select * from Product") =A2.select(like(Name, "*water*"))
3 =db.query("select * from Detail") =A3.switch@i(ProductID,B2:ProductID)
4 =B3.group(ID) =A4.select(sum(Amount)>=200)
5 =db.query("select * from Payment") =A3.select(Instalments==0)
6 =db.query("select * from Evaluation") =A4.select(Score==5)
7 =join(B1:Orders,|D;B4:Detail,ID;B5:Pa

yment, |D;B6:Evaluation,ID)

SPL JOIN

Cross Join

4.1 Non-Equijoin

Please list the age groups of community residents.

Community

ID_|[Name __|Age _
1 David 28 Children 0
2 Daniel 15 Youth 16 40
3 Andrew 65 Middle 41 60

Old 61 100

There is no direct correlation between the two tables. We need to multiply the two tables by cross and then

compare the age groups according to the starting and ending ages.

SPL JOIN

Cross Join

The two tables were cross multiplied and filtered according to the age range (starting = < age < = ending).

[J IlDa! [i Elll 28' [“qu.lldFElq" g] 5'

Community Age
[1,"David",28] [“Youth", 16, 40]
0 Name | e S
1 David 28 Children 0 —— S P~
_ mmmm P28 FOIS6L100]
2 Daniel 15 Youth 16 40 [2, "Daniel",15] [“Children", 0, 15]
old 61 100

[2"Daniel" 15]
|2l "Dallle|"115| |“g|d"a 611 199'
| Resident |

Resident Age
[1, "David",28] [“Youth", 16, 40]
[2, "Daniel",15] [“Children", O, 15]

SPL JOIN

Cross Join

The complete SPL is as follows:

A B

1 =db.query("select * from Community") =db.query("select * from Age")

=A2.new(Resident.ID:ID,
Resident.Name:Name,Resident.Age:Age,A
ge.Grouop:Group)

=xjoin(Al:Resident; B1:Age,
Bl.Start<=Al.Age && B1.End>=Al.Age)

The xjoin function supports filtering conditions and can filter during join.

SPL JOIN

Cross Join

4.2 Equijoin

The data structure of the matrix table is as follows. The product of two matrices is needed.

____ varix [- 4

4
row
1 2 3 X 5
col
4 5 6 3 6
value -) - B

Here we assume that in matrix A*B, the number of columns in matrix A equals the number of rows in

matrix B.

SPL JOIN

Cross Join

1. Two matrix tables are cross multiplied and filtered at the same time (records with column
numbers of A equal to row numbers of B are selected).

MatrixA MatrixB “
col 11,1 [L,1,1]
1

1 1 1 1 1 [1,1,1] [1,24]
1 2 2 1 2 4 T B 2
1 3 3 x 2 1 2 I B 25
2 1 4 2 2 5 B B3
2 2 5 3 1 3 B B26
2 3 6 3 2 6

2. Sum up the product of values. sum(A.value*B.value)
1 14

1
1 2 32
2 1 32
2 2 77

SPL JOIN

Cross Join

The complete SPL is as follows:

A B
1 =db.query("select * from MatrixA") =db.query("select * from MatrixB")
2 =xjoin(Al:A; B1:B,Al.col==Bl.row) =A2.groups(A.row,B.col;sum(A.value * B.value))

The mathematical formula for this example is as follows:

C—AB= 1 2 3 ; g_ Ix1+2x2+3x3 1x4+2x5+3x6) (14 32
ST \4 5 6 3 6 T \4x1+5%x2+6x3 4x4+5x5+6x6] \32 77

Converting SOQL subgueries into JOIN

SPL JOIN

Converting SQL subqueries into JOIN

5.1 IN subquery

Query the sales information of VIP customers.

VIPCustomer

OrderlID % Primary key W ID * Primary key
CustomerID /

EmplD

Date

Amount

The SQL statement is as follows:

select * from Sales where CustomerID in (select ID from VIPCustomer)

SPL JOIN

Converting SQL subqueries into JOIN

Sales

OrderID | CustomerID | EmplD Jo VIPCustomer
oin
1 MINET 2 201867404 2440

filtering ~ CENTC
2 CENTC 1 2018-07-05 3730 > KNEOE

3 OTHk 5 2048-04-08 1863

In the VIP customer table, the customer ID is unique, and the two tables can join by the customer ID.

When the two tables join, the non-corresponding customers (non-VIP customers) need to be deleted.

SPL JOIN

Converting SQL subqueries into JOIN

The complete SPL is as follows:

A B
1 =db.query("select * from Sales") =db.query("select * from VIPCustomer")

2 =Al.join@i(CustomeriD, B1:1D)

A2: The join@i option is used to delete the record when the corresponding value is not found for join filtering.

If you need to use foreign key table objects after join, you can use switch@i to objectify foreign keys and filter.

SPL JOIN

Converting SQL subqueries into JOIN

5.2 NOT IN subquery

Look for students who don't have exam results.

Student N

ID * Primary key « > ID Primary key
Class Course

Name Score

Age

The SQL statement is as follows:
select * from Student t1 where ID not in (select ID from Score t2 where t1.1D =t2.ID)

SPL JOIN

Converting SQL subqueries into JOIN

Score Score Student
1 Group and Join and 1
de-duplicate filter
» 2 < _2
4 3

Student ID is not unique in the student's score table, and can not join directly. The student ID needs to be grouped and

de-duplicated first, and then the student ID is equivalent to the primary key, so join can be performed.

Converting SQL subqueries into JOIN SR

The complete SPL is as follows:

A B
1 =db.query("select * from Student") =db.query("select * from Score")

2 =Bl.group@1(ID) =Al.join@d(ID, A2:ID)

A2: The join@d option is used to keep the record (as opposed to the i option) when the corresponding value is not found
for join filtering.

In IN and EXISTS statements, before joining, it is necessary to determine whether the join field is actually the primary
key in the sub-query (which is not the primary key field, and may become the de facto primary key after conditional

filtering). If it is not the primary key, you need to group according to the specified field before join.

SPL JOIN

Converting SQL subqueries into JOIN

5.3 EXISTS subquery

Example 1: Query the customer information of Hebei Province.

Customer Area

ID * Primary key Country
Name Province
EmplD City

Tel

The SQL statement is as follows:
select * from Customer t1 where exists (select City from Area t2 where Province = ‘HeBel'

and t1.City=t2.City)

SPL JOIN

Converting SQL subqueries into JOIN

Customer Area
D | Name |EmpD| _ City |
ANTON SanChuan 1 ShiJiaZhuang Join HeBei ShiJiaZhuang
BOTTM GuangTong 2 ShangHai filtering HeBei TangShan
BSBEV GuangHao 3 TangShan ” HeBei QinHuangDao

In the sub-query where conditions, besides the city field, the join field also has a constant condition: province =
Hebei. For EXISTS sub-queries with constant conditions, we can consider them as multi-field joins (province +

cities).

SPL JOIN

Converting SQL subqueries into JOIN

The complete SPL is as follows:

A B
1 =db.query("select * from Customer") =db.query("select * from Area")

2 =Al.join@i("HeBei":City, A2:Province:City)

If there is no such constant condition (province = Hebei), join@i() join filtering can be used directly (it may need to be
grouped and de-duplicated first).
In addition, except for null values and constants, IN sub-queries can be converted to EXISTS sub-queries, and SPL

processes the same for both.

SPL JOIN

Converting SQL subqueries into JOIN

5.4 NOT EXISTS subquery

Search for new Internet customers (customers not included in the customer list).

ID * Primary key / ID * Primary key
Customerl|D Name

EmplD Contacts
Date Tel
Amount Industry

The SQL statement is as follows:
select * from Sales t1 where not exists (select * from Customer t2 where t1.CustomerID=t2.

ID and Industry = 'Internet')

SPL JOIN

Converting SQL subqueries into JOIN

Join filtering, customers that cannot be found in the customer table will be deleted.

Sales Customer
“ CUStomerID Join f||ter|ng “ IndUStry
B Internet
2 1 2 Manufacture

The complete SPL is as follows:

A B
1 =db.query("select * from Sales") =db.query("select * from Customer")

2 =B1.select(Industry="Internet") =Al.join@i(CustomerID, A2:ID)

SPL JOIN

Converting SQL subqueries into JOIN

5.5 SELECT subquery

Query the Department name of the employee.

Employee Department

ID * Primary key ID * Primary key
Name / Name
DeptIiD Manager

Level

The SQL statement is as follows:
select ID, Name, (select Name from Department where Employee.DeptID=ID) Department

from Employee

SPL JOIN

Converting SQL subqueries into JOIN

Employee Department
1D | Name | DeptID “
1 David 2 o Sales 2
2 Daniel 1 18 2 R&D 1
Employee
m DeptiD ceparimen
David 2
2 Daniel 1 18 Sales

Observing where condition in select sub-query, department ID is used as join condition, which is

equivalent to foreign key join and direct join.

SPL JOIN

Converting SQL subqueries into JOIN

The complete SPL is as follows:

A B
1 =db.query("select * from Employee") =db.query(“select * from Department")

2 =Al.join(DeptID, B1:I1D, Department)

SPL JOIN

Converting SQL subqueries into JOIN

5.6 WHERE subquery

Look for employees whose post salaries are higher than 8000.

Employee PostSalary

ID * Primary key Level * Primary key
Name Salary

DeptID Allowance

Level

The SQL statement is as follows:

select * from Employee t1 where (select PostSalary from PostSalary t2 where t1. Level=t2.Level) > 8000

SPL JOIN

Converting SQL subqueries into JOIN

Employee PostSalary
“ DeptID
David 2 Join 16 5000 1000
filtering
2 Daniel 1 18 > 1t oo “oog
3 Andrew 1 16 18 9000 3000

In the subquery where condition, only the post level can be used as the join field, which can be

directly joined and filtered.

SPL JOIN

Converting SQL subqueries into JOIN

The complete SPL is as follows:

A
=db.query("select * from Employee")
=db.query("select * from PostSalary")

=A2.select(Salary>8000)

A W NP

=Al.join@i(Level, A3:Level)

SELECT and WHERE subqueries are similar, always using the conditions of the main table, which is

equivalent to foreign key join. Multiple conditions are equivalent to multiple field foreign key join.

THANKS

