
JOIN

Understanding Join

Foreign key table

Same dimension Main & Sub table

Non-Equijoin

Converting SQL subqueries into JOIN

1

2

3

4

CONTENTS

5

01
Understanding Join

SPL JOIN

SQL Join

ID NAME DEPT

1 David 1

2 Daniel 2

3 Andrew 1

ID NAME

1 Sales

2 R&D

ID NAME DEPT ID NAME

1 David 1 1 Sales

1 David 1 2 R&D

2 Daniel 2 1 Sales

2 Daniel 2 2 R&D

3 Andrew 1 1 Sales

3 Andrew 1 2 R&D

1. Cartesian product

2. Conditional filtering

ID NAME DEPT ID NAME

1 David 1 1 Sales

1 David 1 2 R&D

2 Daniel 2 1 Sales

2 Daniel 2 2 R&D

3 Andrew 1 1 Sales

3 Andrew 1 2 R&D

ID NAME DEPT ID NAME

1 David 1 1 Sales

2 Daniel 2 2 R&D

3 Andrew 1 1 Sales

Employee.DEPT =

Department.ID

Department Employee

SPL JOIN

ID NAME DEPT

1 David 1

2 Daniel 2

3 Andrew 1

ID NAME

1 Sales

2 R&D

Employee Department

[1, David, 1] [1, Sales]

[2, Daniel, 2] [2, R&D]

[3, Andrew, 1] [1, Sales]

SPL joins two or more sets and takes the binary group composed of set members as members instead of

simply expanding the data structure of all sets. SPL is not only more in line with the concepts and intentions

of JOIN, but also clearer and more concise than SQL.

JOIN

SQL Join

Department Employee

SPL JOIN

Foreign key

table

Same

Dimension

Table

Main & Sub

table

Common Types of Equivalent JOIN

In reality, most JOINs are equivalent JOINs, and the above three JOINs have covered most cases of

equivalent JOINs.

SPL makes full use of these features to create simpler writing formats and achieve more efficient

computing performance.

SQL Join

SPL JOIN

Employee table

id

name

nationality

department

department table

id

name

manager

★ Primary key

Some fields of Table A are associated with the primary key of Table B. The field associated with the primary

key of table B in table A is called the foreign key of A to B, and B is also called the foreign key table of A. The

foreign key table is a many-to-one relationship.

Foreign key table

★ Primary key

SPL JOIN

employee table

id

name

salary

… …

manager table

id

allowance

… …

★ Primary key ★ Primary key

1 : 1

The primary key of table A is associated with the primary key of table B. A and B are called the same

dimension tables. The same dimension table is a one-to-one relationship, and the relationship with the same

dimension table is equal.

Same Dimension Table

SPL JOIN

Orders table(Main table)

id

customer

date

… …

OrderDetail table(Sub table）

id

no

product

price

★ Primary key

★ Primary key

★ Primary key

1 : N

The primary key of table A is associated with part of the primary keys of table B. A is called the main table

and B is called the sub-table. The main and sub-table is a one-to-many relationship.

Main & Sub table

SPL JOIN

Select the Join Function Determine Join type Single table query operation

First, the type of Join is determined.

Common types are: foreign key table,

same dimension table and main &

sub table.

Use the corresponding function

according to the Join type. Detailed

information will be provided in later

chapters.

After joining, members of other

tables can be accessed in the

form of “field. Property”.

We changed the view on JOIN operation, abandoned the idea of Cartesian product, and regarded multi-table

Join operation as a slightly more complex single-table operation. In this way, we can basically eliminate the Join

from the most common equivalent JOIN operation, and it is much simpler to write and understand.

Process for using Joins

02
Foreign key table

SPL JOIN

employee table

id

name

nationality

department

department table

id

name

manager

★ Primary key ★ Primary key

Foreign key table – Foreign key Objectification

SPL JOIN

ID NAME MANAGER

11 Product Robert

ID NAME NATIONALITY DEPARTMENT

103 Rudy American [11, Product, Robert]

A B

1 =db.query("select * from employee") =db.query("select * from department")

2 =A1.switch(department, B1:id) =A2.select(department.name=="Product")

ID NAME NATIONALITY DEPARTMENT

103 Rudy American Product

Foreign key table – Foreign key Objectification

Employee table

SPL JOIN

employee table

id

name

department

area

department table

id

name

manager

area table

id

name

★ Primary key

★ Primary key

★ Primary key

Foreign key table – Foreign key Objectification

SPL JOIN

ID NAME DEPARTMENT AREA

103 Rudy 11 101

ID NAME DEPARTMENT AREA

103 Rudy [11,Product,Robert] [101, Beijing]

A B

1 =db.query("select * from employee") =db.query("select * from department")

2 =db.query("select * from area")

3 =A1.switch(department, B1:id;

area,A2:id)

=A3.select(department.name==“Product”

&& area.name==“Beijing")

Foreign key table – Foreign key Objectification

EMPLOYEE

SPL JOIN

employee table

id

name

nationality

department

department table

id

name

manager

★ Primary key ★ Primary key

Foreign key table – Foreign key Objectification

SPL JOIN

ID NAME MANAGER

11 Product [101, Robert, Chinese, Product]

1

2

ID NAME NATIONALITY DEPARTMENT

103 Rudy American [11,Product,[101,Robert,Chinese,Product]]

ID NAME MANAGER

11 Product Robert

Foreign key table – Foreign key Objectification

employee

department

ID NAME NATIONALITY DEPARTMENT

103 Rudy American Product

SPL JOIN

A B

1 =db.query("select * from employee") =db.query("select * from department")

2 =B1.switch(manager, A1:id) =A1.switch(department, A2:id)

3
=B2.select(nationality==“American” &&

department.manager.nationality==“Chinese")

Foreign key table – Foreign key Objectification

SPL JOIN

employee table

id

name

nationality

department

department table

id

name

manager

★ Primary key ★ Primary key

Foreign key table – Cases unsupported by Foreign key Objectification

SPL JOIN

ID NAME MANAGER

11 Product Robert

ID NAME NATIONALITY DEPARTMENT DEPT MANAGER

103 Rudy American 11 Product Robert

A B

1 =db.query("select * from employee") =db.query("select * from department")

2 =A1.join(department, B1:id,

name:dept, manager)

=A2.select(department.name==“Product")

ID NAME NATIONALITY DEPARTMENT

103 Rudy American 11

Foreign key table – Cases unsupported by Foreign key Objectification

EMPLOYEE DEPARTMENT

SPL JOIN

A B

1 =db.query("select * from employee") =db.query("select * from department")

2 =A1.join(department, B1:id, ~:dept) =A2.select(department.name==“Product")

Foreign key table – Cases unsupported by Foreign key Objectification

ID NAME MANAGER

11 Product Robert

ID NAME NATIONALITY DEPARTMENT DEPT

103 Rudy American 11 [11,Product,Robert]

ID NAME NATIONALITY DEPARTMENT

103 Rudy American 11

EMPLOYEE DEPARTMENT

SPL JOIN

OrderDetail table

id

no

product

price

OrderPayment table

id

order

orderno

date

Product table

id

name

★ Primary key ★ Primary key

★ Primary key

★ Primary key

Foreign key table – Cases unsupported by Foreign key Objectification

SPL JOIN

1

2

ID ORDER PRODUCT PRICE

10248 1 17 238

10248 2 18 475

ID ORDER PRODUCT PRICE

10248 1 [17,cake] 238

10248 2 [18,apple] 475

ID ORDER ORDERNO DATE

101 10248 1 2012-07-26

103 10248 2 2012-08-15

ID ORDER ORDERNO DATE DETAIL

101 10248 1 2012-07-26 [10248,1, [17,cake],238]

103 10248 2 2012-08-15 [10248,2, [18,apple],475]

Foreign key table – Cases unsupported by Foreign key Objectification

OrderDetail OrderDetail

OrderPayment

OrderPayment

SPL JOIN

A B

1 =db.query("select * from OrderPayment") =db.query("select * from OrderDetail")

2 =db.query("select * from Product") =B1.switch(product, A2:id)

3 =A1.join(order:orderno,B2:id:no,~:detail) =A3.select(year(date)==2018)

4 =B3.select(detail.price>500)
=A4.new(id,date,detail.product.name:na

me,detail.price:price)

Foreign key table – Cases unsupported by Foreign key Objectification

SPL JOIN

Student

ID

Class

Name

Age

Score

ID

Class

Course

Score

★ Primary key

★ Primary key

Foreign key table - Conditional cases of foreign key table

SPL JOIN

1

2

ID Class Name Age

1 Class 1 David 16

2 Class 2 Daniel 17

ID Class Course Score

1 Class 1 Math 89

2 Class 2 English 95

ID Class Name Age

1 Class 1 David 16

ID Class Course Score

1 Class 1 Math 89

Foreign key table - Conditional cases of foreign key table

Student Student

Score

Score

SPL JOIN

A

1 =db.query("select * from Score")

2 =db.query("select * from Student")

3 =A2.select(Class=="Class 1")

4 =A1.join@i(ID, A3:ID)

A3： After filtering classes, multiple primary key Joins (class + student ID) become single primary key Join

(student ID).

A4： The join@i option is used to delete the record when the corresponding value is not found for join

filtering.

Foreign key table - Conditional cases of foreign key table

SPL JOIN

Join fields are the two fields of student ID + class, which can specify the class as a constant condition (class 1)

when joining, thus realizing join filtering.

ID Class Course Score

1 Class 1 Math 89

1 Class 1 English 94

2 Class 2 Math 92

2 Class 2 English 95

… … … …

ID Class Name Age

1 Class 1 David 16

2 Class 2 Daniel 17

… … … …

Foreign key table - Conditional cases of foreign key table

Score Student

SPL JOIN

Direct multi-primary key join can keep the index of student table, thus

ensuring the speed of join.

A

1 =db.query("select * from Score")

2 =db.query("select * from Student")

3 =A1.join@i(ID:"Class 1", A2:ID:Class)

Foreign key table - Conditional cases of foreign key table

03
Same dimension Main & Sub table

SPL JOIN

Same dimension Main & Sub table

There are many similarities between the same

dimension table and the main & sub table, so

they are explained in the same chapter.

The relationship between the same dimension

tables is equal. Once the main & sub tables

are transformed into the same dimension

tables, they can be operated as single table.

Same dimension table and

Main & Sub table

SPL JOIN

employee table

id

name

salary

… …

manager table

id

allowance

… …

★ Primary key ★ Primary key

Employee table is used to store employee information. Managers are also employees. Managers have

more attributes than ordinary employees and use a manager table to save them. The two tables share

the same employee number.

Same dimension Main & Sub table

SPL JOIN

Id name salary

101 Robert 8000

A B

1 =db.query("select * from employee") =db.query("select * from manager")

2 join(A1:employee,id;B1:manager,id) =A2.new(employee.id,employee.name,empl

oyee.salary+manager.allowance)

employee manager

[101,Robert,8000] [101,3000]

id allowance

101 3000

Same dimension Main & Sub table

employee manager

SPL JOIN

Orders table

id

customer

date

… …

OrderDetail table

id

no

product

price

The relationship between main and sub table is unequal, and the reference of main table from sub

table is similar to that of foreign key table.

Here we mainly introduce how to refer to sub tables from the main table.

★ Primary key ★ Primary key

★ Primary key

Same dimension Main & Sub table

SPL JOIN

id no product price

10248 1 17 238

10248 2 18 475

orders detail

[10248,VINET,2012-07-04] [10248,1,17,238]

[10248,VINET,2012-07-04] [10248,2,18,475]

id customer date

10248 VINET 2012-07-04

id amount

10248 713

Same dimension Main & Sub table

Orders OrderDetail

SPL JOIN

A B

1 =db.query("select * from Orders") =db.query("select * from OrderDetail")

2 =join(A1:Order,id;B1:Detail,id) =A2.groups(Order.id:order,Order.custome

r:customer; sum(Detail.price):price)

A

2 =join@m(A1:Order,id;B1:Detail,id)

Same dimension Main & Sub table

SPL JOIN

Orders table

id

customer

date

… …

OrderDetail table

id

no

product

price

OrderPayment table

id

date

amount

… …

It is not right to simply join the three tables. The order details table and the order payment table will have a many-to-many

relationship.

 Id is not the only primary key in the order detail table and the order payment table. How to turn them into the unique

factual primary key?

★ Primary key ★ Primary key

★ Primary key

Same dimension Main & Sub table

SPL JOIN

1 member

[[10248,1,17,238],[10248,2,18,475]]

id date amount

10248 2012-07-26 238

10248 2012-08-15 475

member

[[10248,2012-07-26,238],[10248,2012-

08-15,475]]

2

order detail payment

[10248,VINET, 2012-07-04] [[10248,1,17,238],…] [[10248,2012-07-26,238],…]

id no product price

10248 1 17 238

10248 2 18 475

id customer date

10248 VINET 2012-07-04

Same dimension Main & Sub table

OrderDetail

OrderPayment

Orders

SPL JOIN

A B

1 =db.query("select * from Orders") =db.query("select * from OrderDetail")

2 =db.query("select * from OrderPayment")

3 =B1.group(id) =A2.group(id)

4 =join(A1:Orders,id; A3:Detail, id;

B3:Payment, id)

=A4.new(Orders.id:id,Orders.product:pr

oduct,Detail.sum(price):price,Payment.

sum(amount):amount)

5 =B4.select(amount<price)

When sub tables are grouped by the primary key id of the main table, the id becomes the primary key in

fact. Then we can treat the same dimension main & sub table as the same dimension table.

Same dimension Main & Sub table

SPL JOIN

Orders

ID

CustomerID

SaleID

Date

…

Payment

ID

Channel

Date

Instalments

…

Detail

ID

ProductID

Count

Amout

…

Evaluation

ID

Score

Date

Comment

…

★

★ ★ ★ ★

Product

ID

Name

Producer

Date

…

★

This example contains both the same dimension table and the main & sub table, as well as the foreign key table.

The problem needs to be solved by disassembling: first, the foreign keys are objectified, then the sub tables are

grouped according to the primary key of the main table, and finally, join the same dimension tables.

Same dimension Main & Sub table

SPL JOIN

3

2
ID ProductID Count Amout

10248 [1,cake,…] 17 238

10248 [2,apple,…] 18 475

member

[[10248,[1,…],17,238],[10248,[2,…],18,475]]

Orders Detail Evaluation Payment

Orders Detail Payment Evaluation

[10248,VINET, 2012-

07-04]

[[10248,[1,…],17,238],[

10248,[2,…],18,475]]

[10248,3,2012-07-04,0] [10248,5,2012-07-

16,”Good”]

1
ID ProductID Count Amout

10248 1 17 238

ID ProductID Count Amout

10248 [1, cake,…] 17 238

Same dimension Main & Sub table

SPL JOIN

A B

1 =db.query("select * from Orders") =A1.select(year(Date)==2019&&month

(Date)==1)

2 =db.query("select * from Product") =A2.select(like(Name, "*water*"))

3 =db.query("select * from Detail") =A3.switch@i(ProductID,B2:ProductID)

4 =B3.group(ID) =A4.select(sum(Amount)>=200)

5 =db.query("select * from Payment") =A3.select(Instalments==0)

6 =db.query("select * from Evaluation") =A4.select(Score==5)

7 =join(B1:Orders,ID;B4:Detail,ID;B5:Pa

yment, ID;B6:Evaluation,ID)

Same dimension Main & Sub table

04
Cross Join

SPL JOIN

There is no direct correlation between the two tables. We need to multiply the two tables by cross and then

compare the age groups according to the starting and ending ages.

Group Start End

Children 0 15

Youth 16 40

Middle 41 60

Old 61 100

ID Name Age

1 David 28

2 Daniel 15

3 Andrew 65

Community Age

Cross Join

SPL JOIN

ID Name Age

1 David 28

2 Daniel 15

Group Start End

Children 0 15

Youth 16 40

Middle 41 60

Old 61 100

Resident Age

[1, "David",28] [“Children", 0, 15]

[1, "David",28] [“Youth", 16, 40]

[1, "David",28] [“Middle", 41, 60]

[1, "David",28] [“Old", 61, 100]

[2, "Daniel",15] [“Children", 0, 15]

[2, "Daniel",15] [“Youth", 16, 40]

[2, "Daniel",15] [“Middle", 41, 60]

[2, "Daniel",15] [“Old", 61, 100]

Resident Age

[1, "David",28] [“Youth", 16, 40]

[2, "Daniel",15] [“Children", 0, 15]

Community Age

Cross Join

SPL JOIN

A B

1 =db.query("select * from Community") =db.query("select * from Age")

2
=xjoin(A1:Resident; B1:Age,

B1.Start<=A1.Age && B1.End>=A1.Age)

=A2.new(Resident. ﻿ID:ID,

Resident.Name:Name,Resident.Age:Age,A

ge.Grouop:Group)

The xjoin function supports filtering conditions and can filter during join.

Cross Join

SPL JOIN

Here we assume that in matrix A*B, the number of columns in matrix A equals the number of rows in

matrix B.

Matrix

row

col

value

Cross Join

SPL JOIN

row col value

1 1 1

1 2 4

2 1 2

2 2 5

3 1 3

3 2 6

row col value

1 1 1

1 2 2

1 3 3

2 1 4

2 2 5

2 3 6

A B

[1, 1, 1] [1, 1, 1]

[1, 1, 1] [1, 2, 4]

[1, 1, 1] [2, 1, 2]

[1, 1, 1] [2, 2, 5]

[1, 1, 1] [3, 1, 3]

[1, 1, 1] [3, 2, 6]

… …

row col sum(A.value*B.value)

1 1 14

1 2 32

2 1 32

2 2 77

Cross Join

MatrixA MatrixB

SPL JOIN

A B

1 =db.query("select * from MatrixA") =db.query("select * from MatrixB")

2 =xjoin(A1:A; B1:B,A1.col==B1.row) =A2.groups(A.row,B.col;sum(A.value * B.value))

Cross Join

05
Converting SQL subqueries into JOIN

SPL JOIN

The SQL statement is as follows:

select * from Sales where CustomerID in (select ID from VIPCustomer)

VIPCustomer

ID

…

Sales

OrderID

CustomerID

EmpID

Date

Amount

★ Primary key ★ Primary key

Converting SQL subqueries into JOIN

SPL JOIN

In the VIP customer table, the customer ID is unique, and the two tables can join by the customer ID.

When the two tables join, the non-corresponding customers (non-VIP customers) need to be deleted.

OrderID CustomerID EmpID Date Amout

1 VINET 2 2018-07-04 2440

2 CENTC 1 2018-07-05 3730

3 OTTIK 5 2018-07-08 1863

… … … … …

VIPCustomer

CENTC

KNEOE

…

Converting SQL subqueries into JOIN

Sales

SPL JOIN

A B

1 =db.query("select * from Sales") =db.query("select * from VIPCustomer")

2 =A1.join@i(CustomerID, B1:ID)

A2: The join@i option is used to delete the record when the corresponding value is not found for join filtering.

If you need to use foreign key table objects after join, you can use switch@i to objectify foreign keys and filter.

Converting SQL subqueries into JOIN

SPL JOIN

The SQL statement is as follows:

select * from Student t1 where ID not in (select ID from Score t2 where t1.ID = t2.ID)

Student

ID

Class

Name

Age

Score

ID

Course

Score

★ Primary key Primary key

Converting SQL subqueries into JOIN

SPL JOIN

Student ID is not unique in the student's score table, and can not join directly. The student ID needs to be grouped and

de-duplicated first, and then the student ID is equivalent to the primary key, so join can be performed.

ID

1

2

3

…

ID

1

2

4

…

ID

1

1

2

…

Converting SQL subqueries into JOIN

Score Score Student

SPL JOIN

A B

1 =db.query("select * from Student") =db.query("select * from Score")

2 =B1.group@1(ID) =A1.join@d(ID, A2:ID)

A2: The join@d option is used to keep the record (as opposed to the i option) when the corresponding value is not found

for join filtering.

In IN and EXISTS statements, before joining, it is necessary to determine whether the join field is actually the primary

key in the sub-query (which is not the primary key field, and may become the de facto primary key after conditional

filtering). If it is not the primary key, you need to group according to the specified field before join.

Converting SQL subqueries into JOIN

SPL JOIN

Customer

ID

Name

EmpID

City

Tel

Area

Country

Province

City

★ Primary key

The SQL statement is as follows:

select * from Customer t1 where exists (select City from Area t2 where Province = „HeBei'

and t1.City=t2.City)

Converting SQL subqueries into JOIN

SPL JOIN

In the sub-query where conditions, besides the city field, the join field also has a constant condition: province =

Hebei. For EXISTS sub-queries with constant conditions, we can consider them as multi-field joins (province +

cities).

Province City

HeBei ShiJiaZhuang

HeBei TangShan

HeBei QinHuangDao

… …

ID Name EmpID City

ANTON SanChuan 1 ShiJiaZhuang

BOTTM GuangTong 2 ShangHai

BSBEV GuangHao 3 TangShan

… … … …

Converting SQL subqueries into JOIN

Customer Area

SPL JOIN

A B

1 =db.query("select * from Customer") =db.query("select * from Area")

2 =A1.join@i("HeBei":City, A2:Province:City)

If there is no such constant condition (province = Hebei), join@i() join filtering can be used directly (it may need to be

grouped and de-duplicated first).

 In addition, except for null values and constants, IN sub-queries can be converted to EXISTS sub-queries, and SPL

processes the same for both.

Converting SQL subqueries into JOIN

SPL JOIN

The SQL statement is as follows:

select * from Sales t1 where not exists (select * from Customer t2 where t1.CustomerID=t2.

ID and Industry = 'Internet')

Sales

ID

CustomerID

EmpID

Date

Amount

Customer

ID

Name

Contacts

Tel

Industry

★ Primary key ★ Primary key

Converting SQL subqueries into JOIN

SPL JOIN

Join filtering
ID CustomerID

1 2

2 1

ID Industry

1 Internet

2 Manufacture

A B

1 =db.query("select * from Sales") =db.query("select * from Customer")

2 =B1.select(Industry=“Internet") =A1.join@i(CustomerID, A2:ID)

Converting SQL subqueries into JOIN

Sales Customer

SPL JOIN

The SQL statement is as follows:

select ID, Name, (select Name from Department where Employee.DeptID=ID) Department

from Employee

Employee

ID

Name

DeptID

Level

★ Primary key

Department

ID

Name

Manager

★ Primary key

Converting SQL subqueries into JOIN

SPL JOIN

Observing where condition in select sub-query, department ID is used as join condition, which is

equivalent to foreign key join and direct join.

ID Name DeptID Level

1 David 2 18

2 Daniel 1 18

ID Name Manager

1 Sales 2

2 R&D 1

ID Name DeptID Level Department

1 David 2 18 R&D

2 Daniel 1 18 Sales

Converting SQL subqueries into JOIN

Employee Department

Employee

SPL JOIN

A B

1 =db.query("select * from Employee") =db.query(“select * from Department")

2 =A1.join(DeptID, B1:ID, Department)

Converting SQL subqueries into JOIN

SPL JOIN

The SQL statement is as follows:

select * from Employee t1 where (select PostSalary from PostSalary t2 where t1. Level=t2.Level) > 8000

Employee

ID

Name

DeptID

Level

★ Primary key

PostSalary

Level

Salary

Allowance

★ Primary key

Converting SQL subqueries into JOIN

SPL JOIN

In the subquery where condition, only the post level can be used as the join field, which can be

directly joined and filtered.

ID Name DeptID Level

1 David 2 18

2 Daniel 1 18

3 Andrew 1 16

Level Salary Allowance

16 5000 1000

17 7000 2000

18 9000 3000

Converting SQL subqueries into JOIN

Employee PostSalary

SPL JOIN

A

1 =db.query("select * from Employee")

2 =db.query("select * from PostSalary")

3 =A2.select(Salary>8000)

4 =A1.join@i(Level, A3:Level)

SELECT and WHERE subqueries are similar, always using the conditions of the main table, which is

equivalent to foreign key join. Multiple conditions are equivalent to multiple field foreign key join.

Converting SQL subqueries into JOIN

THANKS

