
www.raqsoft.com

Agile data computing middleware

Implementation solution of application scenario
of esProc

Computing middleware: a programmable general software between application and data, which can perform computing independently. It is often used to solve

problems such as loose coupling, high performance, special source computing, multi-source hybrid computing, complex logic, etc.

Traditional hard coding solution esProc solution

Source data

Computing middleware

Front end application

Oracle mySQL hadoop Web Service

Note： This article focuses on the mainstream embedded and Java application architecture, and esProc also supports the independent and non Java

application architecture.

Architecture contrast

Java desktop

application

Business logic Java hard coding

Data interface JDBC Java hard coding

Java Web

application

Query interface Invocation of hard coding type

Java hard coding

Oracle mySQL hadoop Web Service

Java desktop

application

Business logic SPL script

Data interface JDBC

Java Web

application

Query interface Embedded JDBC Driver

Call statement Query statement

Built-in

functions

External

library

… …

Similarity

 Consistent logical architecture

 Consistent implementation process

Main difference

 Front end application query interface
 esProc solution：JDBC driver
 Hard coding solution: Hard coding of basic class library

 Business logic implementation
 esProc solution： Structured computing function
 Hard coding solution ：Hard coding of basic class library

 Non database access interface
 esProc solution： Access library function
 Hard coding solution ：Hard coding of basic class library

Characteristic contrast

Independent calculation script Separation of algorithm and main application

Hot switching possible

Reduce the coupling between algorithm and

Application

esProc underlying capability Middleware feature Advantage

Complete computing class library Replace stored procedure

Independent of specific databases

Reduce the coupling between Database and

Application

Reduce database pressure

Direct hybrid computing of external

source and database Reduce intermediate table

Reduce the difficulty of development and

maintenance

Reduce database pressure

Data in the database can be moved out

as files Reduce intermediate table
Reduce database pressure

Support discrete dataset, ordered set,

process calculation, high performance

algorithm
Can simplify complex calculation

Improve development efficiency

Advantages

CONTENTS

Java application integration

1. Java application integration

2. Report integration

3. Stored procedure outside database

4. Diversified data sources

5. Java algorithm outlay

6. Application data cache

7. Multi source hybrid computing method

8. ODBC and HTTP integration

Java desktop

application

Business logic Script file

Data interface JDBC

Java Web

application

Query interface Embedded JDBC Driver

Call statement Call statement

Built-in

functions

External

library

JAR

SPL SPL

Note：For esProc deployment and JDBC configuration, please refer to http://doc.raqsoft.com/esproc/tutorial/jdbcbushu.html

For JAVA calls esProc，please refer to http://doc.raqsoft.com/esproc/tutorial/bjavady.html

Integration steps

Java application integrates esProc and calls the SPL script file.

4. Execute the call statement in the Java code, call the SPL file through the

JDBC of esProc, and the esProc JDBC interprets and executes the SPL file,

and returns the calculation result.

2. Configure the running environment in raqsoftconfig.xml, such as the

jdbc driver and URL of the data source (not esProc itself).

3. Write specific business algorithm in SPL file and store it in file system.

1. Deploy the esProc driver jar packages in Java application.

Oracle mySQL hadoop Web Service

…

http://doc.raqsoft.com/esproc/tutorial/jdbcbushu.html
http://doc.raqsoft.com/esproc/tutorial/bjavady.html

Deploy esProc JDBC

The esProc JDBC provides an open and friendly interface for programmers to call esProc Middleware in JAVA applications.

Deploy method： Copy driver to Java application's classpath.

esproc_bin_xxxx.jar esProc computing engine and JDBC driver package

icu4j_60.3.jar Deal with internationalization

jdom-1.1.3.jar Parse configuration file

raqsoftConfig.xml Running environment configuration file

Note：For deploy details, please refer to http://doc.raqsoft.com/esproc/tutorial/jdbcbushu.html

http://doc.raqsoft.com/esproc/tutorial/jdbcbushu.html

Configure running environment

The running environment of esProc is stored in raqsoftconfig.xml, which is mainly the data source information of business database or data

warehouse, and also includes authorization, script file directory, character set, external library, etc.

Configuration information of an Oracle data source:

<DB name=“orcl">

 <property name="url" value="jdbc:oracle:thin:@192.168.1.8:1521:runqian"/>

 <property name="driver" value="oracle.jdbc.driver.OracleDriver"/>

 <property name="type" value="1"/>

 <property name="user" value="ydxx"/>

 <property name="password" value="password"/>

 <property name="batchSize" value="0"/>

……

</DB>

Note：The JDBC package of the data source is also deployed in the classpath.

For detail configuration of raqsoftConfig.xml，please refer to http://doc.raqsoft.com/esproc/tutorial/jdbcbushu.html

http://doc.raqsoft.com/esproc/tutorial/jdbcbushu.html

Similarity

 The deployment method is similar

 Follow the same set of interface specifications

Main difference

 Calling location

esProc JDBC：in java application

Data source JDBC：in esProc script file

 Calling method

esProc JDBC：java code
Data source JDBC ：SPL function

 Effect

esProc JDBC：Access esProc script file to get the calculation
results of the business algorithm.
Data source JDBC: Access database / warehouse to obtain raw
data.

Configure running environment esProc JDBC vs Data source JDBC

Script file

The SPL script file is the business middleware algorithm, which is written by the programmer. Generally, it needs to fetch data from the data source,

then realize the business algorithm, and finally return the calculation result to the main program by the JDBC.

Example：orcl is database data source, and java application needs to fetch data from sales table. Some of the data are as follows:

 A B C
1 =8.(range(1,100000000L,~:4)) /

2 fork A1 =connect("dbsource") /Multi-thread parallel

3
=B2.query@x("select * from sales where orderid>=? and

orderid<?",A2(1),A2(2))
/Query in thread

4 =A2.conj() /Merge and output

Note： The starting and ending range of OrderID is 1-100000000L. A1 code divides it equally into eight time intervals, one for each thread. For example,
thread 2 is 12500000-25000000.

The performance of the original single thread fetching is poor. The following is to use esProc as the middleware, use the 8-thread parallel query, and merge the query

results. The script file conj.dfx is as follows:

ordered client sellerid amount orderdate
1 UJRNP 17 392 2012/11/2 15:28

2 SJCH 6 4802 2012/11/9 15:28

3 UJRNP 16 13500 2012/11/5 15:28

4 PWQ 9 26100 2012/11/8 15:28

5 PWQ 11 4410 2012/11/12 15:28

……
Class.forName("com.esproc.jdbc.InternalDriver");
con=DriverManager.getConnection("jdbc:esproc:local://");
PreparedStatement pstmt = con.prepareStatement(“call conj()");
ResultSet rs=pstmt. executeQuery()
……

 A B C
1 =8.(range(1,100000000L,~:4)) /

2 fork A1 =connect("dbsource") /Multi-thread parallel

3
=B2.query@x("select * from sales where orderid>=? and

orderid<?“ and amount>=? and amount<?,

A2(1),A2(2),minAmount,maxAmount)

/Query in thread

4 =A2.conj() /Merge and output

The script file can take parameters, such as filtering data by order amount range (minamount, maxamount). The script file is as follows:

Java application calls script file through esProc JDBC.

At this time, java code should be written according to

parameter query:
…
PreparedStatement pstmt = con.prepareStatement(“call conj(?,?)”);
//Can also be written as call conj(4000,8000)
pstmt.setObject(1, 4000);pstmt.setObject(2, 8000);
ResultSet rs=pstmt. executeQuery()
……

//For more contents on Java calls esProc, please refer to http://doc.raqsoft.com/esproc/tutorial/bjavady.html

Script file

http://doc.raqsoft.com/esproc/tutorial/bjavady.html

Script file

The data source can also be text, Excel, etc.

The source data is the tab separated text file

sales.txt. The first few lines are as follows:

 A B

1 =file("d:/sales.txt").import@t() /Open txt file

2 =A1.select(amount>=minAmount && amount<maxAmount) /Parameter query

3 =A1.groups(client;sum(amount):sAmount) /Group and aggregate

ordered client sellerid amount orderdate

1 UJRNP 17 392.0 2012-11-02 15:28:05

2 SJCH 6 4802.0 2012-11-09 15:28:05

3 UJRNP 16 13500.0 2012-11-05 15:28:05

Query by parameter, group by client and sum the

amount. The script file run.dfx is as follows:

The above scripts can also be combined into one

sentence:

 A

1
=file(“d:/sales.txt”).import@t().select(amount>=minAmount

&&amount<maxAmount).groups(client;sum(amount):sAmount)

The calculation result is as follows:
client sAmount

AVU 482640
AYWYN 455320
BTMMU 496226

Script file

As a comparison, we use Java hard coding

(traditional computing middleware) to

implement the grouping aggregation algorithm.

Comparator<salesRecord> comparator = new Comparator<salesRecord>() {

 public int compare(salesRecord s1, salesRecord s2) {

 if (!s1.client.equals(s2.client)) {

 return s1.client.compareTo(s2.client);

 } else {

 return s1.ID.compareTo(s2.ID);

 }

 }

};

Collections.sort(sales, comparator);

ArrayList<resultRecord> result=new ArrayList<resultRecord>();

salesRecord standard=sales.get(0);

float sAmount=standard.value;

for(int i = 1;i < sales.size(); i ++){

 salesRecord rd=sales.get(i);

 if(rd.client.equals(standard.client)){

 sAmount=sAmount+rd.value;

 }else{

 result.add(new resultRecord(standard.client,sAmount));

 standard=rd;

 sAmount=standard.value;

 }

}

result.add(new resultRecord(standard.client,sAmount));

return result;

SPL script files are stored in the operating system directory.

-Main Directory

 -Customer management

 -run.dfx()

 -Attendance performance

 -Enterprise resource management

 -Financial management

 -Fixed assets statistics.dfx

 -Cash flow query.dfx

 -Bad debt early warning analysis.dfx

 -Inventory management

 …

Script file

Generally, it is recommended to divide directories by functional modules, or by application type, time and version.

If the script file is simple, the SPL query statement can be used instead of the SPL call statement + script file. The former is similar to Java calling

SQL statements, and the latter is similar to calling stored procedures.

3. Directly implement business logic through query statements:

1. Deploy the esProc driver jar packages in Java application.

2. Configure the running environment in raqsoftconfig.xml.

Query statement

Business logic

Java desktop

application

Data interface JDBC

Java Web

application

Query interface Embedded JDBC Driver

Query statement Query statement

Built-in

functions

External

library

JAR

Oracle mySQL hadoop Web Service

…

 A

1
=file(“d:/sales.txt”).import@t().select(amount>=minAmount

&&amount<maxAmount).groups(client;sum(amount):sAmount)

…
PreparedStatement pstmt =
con.prepareStatement(“call run(?,?)”);
pstmt.setObject(1, 4000);
pstmt.setObject(2, 8000);
ResultSet rs=pstmt. executeQuery()
…

…

PreparedStatement pstmt =

con.prepareStatement(‚=file(\‚d:/sales.txt\‛).import@t(

).select(amount>=?

&&amount<?).groups(client;sum(amount):sAmount)");

pstmt.setObject(1, 4000);

pstmt.setObject(2, 8000););

ResultSet rs=pstmt. executeQuery()

…

SPL call statement + script file SPL query statement

run.dfx

Query statement

CONTENTS

1. Java application integration

2. Report integration

3. Stored procedure outside database

4. Diversified data sources

5. Java algorithm outlay

6. Application data cache

7. Multi source hybrid computing method

8. ODBC and HTTP integration

Report integration

Java report tool is a kind of Java application, in which report IDE is generally desktop application and report service is generally web application.

Both of them can integrate esProc to realize the computing middleware.

4. Create a new stored procedure dataset in the report, call the esProc script file, or

create a new SQL dataset, and write the SPL query statement directly.

2. Configure the running environment in raqsoftconfig.xml, such as the jdbc driver
and URL of the data source (not esProc itself).

3. Write specific business algorithm in SPL file and store it in file system.

1. Deploy the esProc driver jar packages in IDE or web service.

Integration steps

Report IDE

Business logic Script file

Data interface JDBC

Report server

Query interface Embedded JDBC Driver

Call statement Call statement

Built-in

functions

External

library

JAR

SPL SPL

Oracle mySQL hadoop Web Service

…

The report tool deploys the esProc JDBC in the same way as the common Java application does.

For example, to deploy in the IDE of open source reporting tool BIRT, you only need to copy the esProc driver to:
 [Installation directory]\plugins\org.eclipse.birt.report.data.oda.jdbc_4.6.0.v20160607212
The way to configure raqsoftconfig.xml remains the same, and we won't go into details here.

Some reporting tools provide a visual interface, which makes it easier to specify the driver jar package, such as JasperReport.

Note： In the above figure, raqsoftconfig.xml is placed in the config directory, and it can also be copied to any jar package.

Deploy esProc JDBC

After writing the script file, you should first establish the data source in the report IDE and point to esProc. Take the BIRT report as an example.

Driver Class selection：com.esproc.jdbc.IntervalDriver (v1.0)

Database URL：jdbc:esproc:local://

JNDI data source name： Free to fill in

Report calls esProc script

Create a new stored procedure dataset, similar to database stored procedures.

Choose esProc as data source, and call esProc script file.

Report calls esProc script

Set parameters, design reports, and preview reports. The usage is the same as ordinary data sets.

Report calls esProc script

Horizontal columns: use the column number pColNum as the parameter to place the employee table in horizontal columns in the report.

When pColNum = 2, the report should present: When pColNum = 3, the report should present:

EID NAME DEPT EID2 NAME2 DEPT2 EID3 NAME3 DEPT3

1 Rebecca R&D 2 Ashley Finance 3 Rachel Sales

4 Emily HR 5 Ashley R&D 6 Matthew Sales

7 Alexis Sales 8 Megan Marketing 9 Victoria HR

10 Ryan R&D 11 Jacob Sales 12 Jessica Sales

13 Daniel Finance 14 Alyssa Sales 15 Alexis Sales

16 Christopher Production 17 Hannah Marketing 18 Jonathan Administration

Using script file to implement the algorithm

 A B C

1 =demo.query("select EId,Name,Dept from employee ")
2 =A1.step(pColNum,1) /Take the first column，as intermediate result

3 for to(2:pColNum) =A1.step(pColNum,A3) /Take the Nth column

4
=A2=A2.join(#,B3:#,EID:${"EID"/A3},
NAME:${"DEPT"/A3}, DEPT:${"DEPT"/A3})

/Add column N to the right of the intermediate result
as the new intermediate result

5 return A2 /Return the final result

EID NAME DEPT EID2 NAME2 DEPT2

1 Rebecca R&D 2 Ashley Finance

3 Rachel Sales 4 Emily HR

5 Ashley R&D 6 Matthew Sales

7 Alexis Sales 8 Megan Marketing

9 Victoria HR 10 Ryan R&D

11 Jacob Sales 12 Jessica Sales

Note： Macro in the dynamic syntax of esProc is used in the algorithm，please refer to http://doc.raqsoft.com/esproc/tutorial/huoyongzifuchuan.html#_141

The algorithm uses the method of join by sequence number ， please refer to http://doc.raqsoft.com/esproc/func/join.html

Algorithm example

http://doc.raqsoft.com/esproc/tutorial/huoyongzifuchuan.html
http://doc.raqsoft.com/esproc/func/join.html

CONTENTS

1. Java application integration

2. Report integration

3. Stored procedure outside database

4. Diversified data sources

5. Java algorithm outlay

6. Application data cache

7. Multi source hybrid computing method

8. ODBC and HTTP integration

Stored procedure outside database

Java desktop

application
Java Web application

Query interface Source database JDBC

Data

Business

algorithm

Database

table

Database

table

Database

table

call statement call statement

Instead of the stored procedure of the database, esProc script is used to decouple the business algorithm and the application program.

Implementation ideas

Stored procedure Stored procedure

Java desktop

application
Java Web application

Query interface esProc JDBC

Data

Business

algorithm

Database

table

Database

table
Database

table

call statement Java hard coding

 Script file Java hard coding

Data interface Source database JDBC

Class call

SPL

Switch data source with the same structure

History and current are two databases of the same type with the same structure but different data. When querying and calculating, the middleware needs to select which

database to use through parameters. The following is implemented with esProc switch.dfx script.

 A B

1 =${pSource}.query(“select * from sales”)

pSource is a macro parameter representing the data source name. If the pSource value in the Java program is "history", the query is executed on

history database, that is:

PreparedStatement pstmt = con.prepareStatement(“call switch(?)");

pstmt.setObject(1, “history”);

pstmt.execute()

The calculation result is shown on the right:

orderid client sellerid amount orderdate
1 UJRNP 17 392 2012/11/2 15:28
2 SJCH 6 4802 2012/11/9 15:28
3 UJRNP 16 13500 2012/11/5 15:28
4 PWQ 9 26100 2012/11/8 15:28
5 PWQ 11 4410 2012/11/12 15:28

If the pSource value is ”current”，the calculation result is different. orderid client sellerid amount orderdate
982 SJCH 12 10900 2019/7/12 15:28
983 GLH 13 8330 2019/7/14 15:28
984 SJCH 19 5684 2019/7/20 15:28
985 YZ 14 27100 2019/7/13 15:28
986 HANAR 10 11100 2019/7/15 15:28

Algorithm example

Switch data source with different structure

Application systems may be migrated between multiple databases, such as Mysql to Oracle, with different database structure. The standard SQL

independent of the database is used in development, and the SQL statement does not need to be modified during migration. Only the database type

is passed into the script file as a parameter, which can be translated into a specific database SQL. The following is the script file run.dfx.

 A B

1
select left(client,2),year(orderDate) y,sum(amount) sAmount from sales group by

left(client,2),year(orderDate)
/SPL standard SQL

2 =A1.sqltranslate(sqlType)
/Translate standard SQL into SQL of specified database according to

parameters

3 =connect@l("dbsource").query@x(A2) /Execute translated SQL

If the sqltype value in the Java program is "MySQL", the SQL in A2 will be translated as:

select left(client,2),year(orderDate) y,sum(amount) sAmount from sales group by left(client,2),year(orderDate)

If sqltype is “Oracle”, the translation result of A2 is:

select left(client,2),EXTRACT(YEAR FROM orderDate) y,sum(amount) sAmount from sales group by

left(client,2),EXTRACT(YEAR FROM orderDate)

Algorithm example

Dynamic alignment

For many algorithms databases are difficult to implement, or some databases are difficult to implement. For example, the external parameter pclient is a dynamic list of

major customers. Please count the order amount in the order of the list. If pclient = ["HL", "MIP", “SJCH"], the calculation result should be as follows:

Use esProc script file to implement:

client samount

HL 305320

MIP 397000

SJCH 500298

 A

1 =connect@l("dbsource").query@x("select client,sum(amount) sAmount from sales where client in(?) group by client ",pclient)

2 =A2.align(A1,client)

Algorithm example

CONTENTS

1. Java application integration

2. Report integration

3. Stored procedure outside database

4. Diversified data sources

5. Java algorithm outlay

6. Application data cache

7. Multi source hybrid computing method

8. ODBC and HTTP integration

Diversified data sources

Take mongodb for example, first

configure the external library

Scenario: for special data sources such as WebService, mongodb, hive, etc., esProc provides an external library interface. With the jar package

provided by the data source, it can realize a convenient and fast special source computing middleware.

Special data sources

Put mongodb's jar package in the mongodb directory of the external library, as follows:

In the script file, use the shell command to query the EMP collection, complete the query and group calculation.

 A B

1 =mongo_open("mongodb://192.168.1.7:27017/mydb") /Connect

2 =mongo_shell@x(A1,"emp.find()") /Query

3 =A2.groups(department;count(empid):total) /Group and aggregate

Extended reading： For more external library usage, please refer to http://doc.raqsoft.com/esproc/func/wbk.html

Special data sources

http://doc.raqsoft.com/esproc/func/wbk.html

For text and excel, esProc provided built-in functions to access, such as the previous example: text grouping summary.

 A B

1 =file("d:/sales.txt").import@t() /Open txt file

2 =A1.groups(client;sum(amount):sAmount) /Group and aggregate

In addition to the built-in functions, esProc also provides SQL syntax, which can access the text in a more convenient way. The above script can be written as a

SQL in Java:

……

Class.forName("com.esproc.jdbc.InternalDriver");

con=DriverManager.getConnection("jdbc:esproc:local://");

ResultSet rs = con.executeQuery(‚select client, sum(amount) sAmount from d:/sales.txt")

……

SQL syntax

Filter select ID,NAME,GENDER,AGE from students.txt where GENDER=‘F’ and AGE>24

Sort

Set

select ID,NAME,GENDER,AGE from students.xlsx order by AGE

select ID,NAME,GENDER,AGE from class1.txt union select

ID,NAME,GENDER,AGE from class2.xls

SQL examples

Background: the same logical table is scattered in multiple physical databases, and such data is merged and calculated.

 A B

1
=connect("org.hsqldb.jdbcDriver","jdbc:hsqldb:hsql://127.0.
0.1/demo?user=sa")

=connect("com.mysql.jdbc.Driver","jdbc:mysql://127.0.0.1:3306/
demo?user=root&password=password")

2 =A1.query@x("select * from sales") =B1.query@x("select * from sales")

3 =A2 | B2

MySQL stores the order data of 2015, Oracle stores the data of 2013-2014. Please merge the data of the two databases and return.

Please merge the data of two databases and sort by order amount.

 A B

1
=connect("org.hsqldb.jdbcDriver","jdbc:hsqldb:hsql://127.0.
0.1/demo?user=sa")

=connect("com.mysql.jdbc.Driver","jdbc:mysql://127.0.0.1:3306/
demo?user=root&password=password")

2 =A1.query@x("select * from sales order by amount") =B1.query@x("select * from sales order by amount")

3 =[A2,B2].merge(AMOUNT)

Merge of data from multi databases

CONTENTS

1. Java application integration

2. Report integration

3. Stored procedure outside database

4. Diversified data sources

5. Java algorithm outlay

6. Application data cache

7. Multi source hybrid computing method

8. ODBC and HTTP integration

Java algorithm outlay

Computing middleware

Front end application

Source data

Algorithm built-in Algorithm outlay

The algorithm is placed outside in the file system, and the call statement (string) is used to reduce the coupling between the main program and
the algorithm.

Algorithm outlay

Java main program

Jar package

Compile and

execute
Java hard coding

Data interface JDBC

Query interface Class call (highly coupled)

Class method Class method

Built-in

functions

External

library

Java hard coding

Oracle mySQL hadoop Web Service

…

Java main program

File system

Interpret and

execute

SPL file

Data interface JDBC

Query interface JDBC（ Low coupling ）

Call statement Call statement

Built-in

functions

External

library

SPL file

Oracle mySQL hadoop Web Service

…

Hot switch: after the business algorithm is modified, it can be replaced directly without compilation or downtime.

The business algorithm queryorder.dfx originally needs to query the text file.

 A B

1 =file(“sales.txt”).import@t() /Open the text file

2 =A1.select(orderID==pClient) /Return query result. pClient is parameter，representing customer number

Change the algorithm to query data from excel and directly cover the original algorithm.

 A B

1 =file(“sales.xlsx”).xlsimport@t() /Open Excel file

2 =A1.select(orderID==pClient) /Return query result.

Algorithm outlay

[{

"EID":1,"NAME":"Rebecca","SURNAME":"Moore","GENDER":"F","STATE":"California","BIRTHDAY":"1974-11-20","HIREDATE":"2005-03-

11","DEPT":"R&D","SALARY":7000,

"orders":[{"ORDERID":14,"CLIENT":"JAYB","SELLERID":1,"AMOUNT":7644.0,"ORDERDATE":"2012-11-16 15:28:05"},

 {"ORDERID":77,"CLIENT":"HANAR","SELLERID":1,"AMOUNT":13200.0,"ORDERDATE":"2013-01-17 15:28:05"},

 {"ORDERID":78,"CLIENT":"YZ","SELLERID":1,"AMOUNT":11600.0,"ORDERDATE":"2013-01-20 15:28:05"}

]

},{

"EID":2,"NAME":"Ashley","SURNAME":"Wilson","GENDER":"F","STATE":"New York","BIRTHDAY":"1980-07-19","HIREDATE":"2008-03-

16","DEPT":"Finance","SALARY":11000,

"orders":[{"ORDERID":7,"CLIENT":"EGU","SELLERID":2,"AMOUNT":17800.0,"ORDERDATE":"2012-11-06 15:28:05"},

 {"ORDERID":19,"CLIENT":"JOPO","SELLERID":2,"AMOUNT":3430.0,"ORDERDATE":"2012-11-18 15:28:05"},

 {"ORDERID":46,"CLIENT":"UJRNP","SELLERID":2,"AMOUNT":1274.0,"ORDERDATE":"2012-12-20 15:28:05"}

]

},{

"EID":3,"NAME":"Rachel","SURNAME":"Johnson","GENDER":"F","STATE":"New Mexico","BIRTHDAY":"1970-12-17","HIREDATE":"2010-12-

01","DEPT":"Sales","SALARY":9000,

"orders":[{"ORDERID":17,"CLIENT":"PJIPE","SELLERID":3,"AMOUNT":7154.0,"ORDERDATE":"2012-11-19 15:28:05"},

 ...

In order to reduce system coupling completely, some Java applications need to get data from microservices, which requires that Java programs
have the ability to calculate JSON.

Access the microservice, read the multi-layer JSON, calculate the order amount of each employee, as a new field amount of employee

record, the result is output as a two-dimensional table. The source data JSON is as follows:

Json calculation

Using esProc external algorithm, and the script is as follows:

 A B

1 =httpfile("10.0.0.4:8080/recordQuery?comp=cidc").read() /read microservice

2 =json(A1) /Convert JSON to sequence table

3
=A8.new(EID,NAME,SURNAME,GENDER,DEPT,SALARY,orders.sum(AM
OUNT):sAmount)

/Calculate employee's order amount

Calculation result of A2

Calculation result of A3

Json calculation

esProc can also parse JSON parameters

Example: query the order table according to the start date, end date and customer list. Parameters are passed in the form of JSON
string (named pjson), as follows:

{beginDate:2012-01-01, endDate:2012-12-10,

 clientList:[{client:UJRNP},{client:UJRNP},{client:PWQ}]

}

Use script file to implement query.

 A B C
1 =json(pJson) /Convert JSON parameter to sequence table

2 =beginDate=A1.beginDate =endDate=A1.endDate
/Resolve start and end date parameters, and automatically
convert to date type

3 =clientList=A1.clientList.(client) /Resolve clientList

4
=demo.query("select * from sales where orderdate>=?
and orderdate<? and client
in(?)",beginDate,endDate,clientList)

 /Execute SQL with parameters

The return result of the above algorithm is a two-dimensional table. If the Java main program needs the algorithm to return JSON
format, write the following in cell A5:

5 =json(A4)

Json calculation

CONTENTS

1. Java application integration

2. Report integration

3. Stored procedure outside database

4. Diversified data sources

5. Java algorithm outlay

6. Application data cache

7. Multi source hybrid computing method

8. ODBC and HTTP integration

Application data cache

When the source database is under great pressure, the intermediate data should be calculated in advance so that the application server can access it quickly.

The intermediate data is often cached in the source database before, and can be cached in the application server after using the middleware of esProc.

Java application

Query interface

Call statement

Database JDBC driver

Intermediate data

Source

database

table

Database

table

Business data

Query statement

Business logic Stored procedure

Use database to store intermediate result

Application Architecture

Source

database

table

Source

database

table

Database

table

Java application

Query interface

Call statement

esProc JDBC driver

Intermediate data

Database

table

Simple

table

Business data

Query statement

Business logic Script file

Use esProc simple table to store intermediate result

Source

database

table

Source

database

table

Simple

table

Data interface JDBC

SPL

esProc simple table Database table

Calculation ability Sufficient structured algorithms Sufficient structured algorithms

Addition High performance addition Append relatively slowly

Modify Not good at Be good at

Occupancy space Small Large

Relationship between tables No physical foreign key and constraint relationship Can have physical foreign key and constraint relationship

The order of access
Natural order Order by is required due to uncertain order

Segment to fetch data Arbitrary segmentation, simple way Use where segmentation in a complex way

Segment by group Support Not supported

Computational performance High Low

Simple table: the intermediate data is stored in the application server without consuming database resources.

Database table: the intermediate data is stored in the source database, which still consumes database resources.

Simple table and database table

Data suitable for caching: intermediate tables with complex algorithm and large calculation amount such as summary statistics.

Data that does not need to be cached: business tables that are not computationally stressed.

Note 1: if necessary, frequently accessed business tables can also be cached.

Note 2: the simple table is stored in the operating system directory, which can be divided by functional modules or by application type, time and version.

esProc simple table

库表

库表

库表

Source database

-ERP

 -Financial management

 -Balance sheet.btx

 -Budget risk assessment.btx

 -General ledger summary.btx

 -Sales management

 -Customer churn statistics.btx

 -Monthly sales.btx

-CRM…

Accounting balance table (Intermediate table with complex

algorithms）

Budget risk assessment（ Intermediate table with complex

algorithms ）

 General ledger summary （Summary intermediate table）

Customer churn Statistics (Summary intermediate table ）

 Monthly sales （ Summary intermediate table ）

 Financial general ledger (business table)

 Budget table（ business table ）

 Order table（ business table ）

Customer table（ business table ）

Sales table（ business table ）

Select cached data

The most direct and simple way: export the intermediate table in the source database as a simple table.

In the source data, the aggregation intermediate table salesAgg is generated according to the business table sales. Some of the data are as follows:

Export salesAgg as a simple table: A B

1 =connect@l(‚db‛).cursor(‚select * from salesAgg‛) /SQL fetch data

2 =file(‚salesAgg.btx‛).export@b(A1) /Create simple table

After reading the simple table, you can see that its data is the same as the intermediate table.

 A B

1 =file(“salesAgg.btx”).import@b() /Read simple table

year month sellerid samount cquantity
2012 11 17 35792 3
2012 11 6 4802 1
2012 11 16 39334 3
2012 11 9 26100 1
2012 11 11 25610 2

year month sellerid samount cquantity
2012 11 17 35792 3
2012 11 6 4802 1
2012 11 16 39334 3
2012 11 9 26100 1
2012 11 11 25610 2

Generating simple tables

More common way: use SPL script to transform (replace) the generation process of the original intermediate table, and generate the simple
table directly from the business table.

Generate a simple table directly with business table sales:

 A B

1

=connect@l(‚db‛).cursor(‚select year(orderdate) as year,month(orderdate) month

as month,sellerid,sum(amount)sAmount,count(1) cQuantity from sales group by

year(orderdate),month(orderdate) ,sellerid‛)

/SQL fetch data

2 =file(‚salesAgg.btx‛).export@b(A1) /Create simple table

Generating simple tables

Scenario: it is applicable to appending data to historical simple table regularly.

Note: the source data must have a time stamp for increment.

Take yesterday's incremental data from the business table sales in the early morning of each day and add it to the simple table salesagg.btx.

 A B

1
=connect@l(“db”).cursor@x(“select year(orderdate) as year,month(orderdate) month
as month,sellerid,sum(amount)sAmount,count(1) cQuantity from sales
where orderdate=? group by year(orderdate),month(orderdate), sellerid“, pDate)

Take incremental data by date

2 =file(“salesAgg.btx.btx”).export@ab(A1)
Append to existing simple table

Note 1: The simple table cannot be modified. If the data changes, the simple table should be regenerated. esProc group table is used for data warehouse, and this file format

supports modification.

Note 2: The way to take incremental is flexible. You can get data by time interval or by date. In the above example, pdata is a parameter, which is used to calculate yesterday's

date from the outside and pass it in, so that it is convenient to control which date of data to append. If you want to extract yesterday's data, you can also use the SPL

expression date(elapse(now(),-1)) instead of pdate.

Extended reading： Oracle has a unique incremental addition method of OGG, which is supported by esProc. For details, please refer to OGG Incrementally collected data

importing into database

Incremental addition

http://c.raqsoft.com/article/1571710559731
http://c.raqsoft.com/article/1571710559731
http://c.raqsoft.com/article/1571710559731

Simple table supports esProc SQL syntax, and examples of usage are as follows:

Query select * from salesAgg.btx where samount>=10000 && samount<20000

Aggregate

Join
select s.year, s.month, e.name from salesAgg.btx s, employee.btx e where s.sellerid=e.eid

select year, month, sum(samuont) as total from salesAgg.btx group by year,month

Using simple table

When the business logic is complex, the SPL script should be used for calculation.

Example： Stockagg.btx, a simple table generated by the inventory table, records the entered and issued quantity of each product every day. Part of the data is as
follows:

Query the simple table by time period, and calculate the following inventory status: open, enter, total, issued, and close of each product every day.

 A B
1 =fle(“stockAgg.btx”).import@b().select(IDATE>=start &&IDATE<=end)
2 =A1.group(INAME) =periods(start,end,1)

3 for A2 =A3.align(B2,IDATE)

4 >c=0

5
=B3.new(A3.INAME,B2(#):IDATE, c:OPENING, ?
ENTER,(b=c+ENTER):TOTAL,ISSUE,(c=b-
ISSUE):CLOSE)

6 =@|B5

7 return B6

Using simple table

When a simple table is generated, it can be stored optimally according to the data characteristics, so as to achieve better computing performance.

Orderly storage: salesagg.btx often performs orderly calculation (such as grouping and aggregating by year and month), so the simple table should be generated in the
order of grouping field.

 A B

1

=connect@l(‚db‛).cursor(‚select year(orderdate) as year,month(orderdate) month as

month,sellerid,sum(amount)sAmount,count(1) cQuantity from sales group by

year(orderdate),month(orderdate) ,sellerid order by year,month‛)

/SQL sorting

2 =file(‚salesAgg.btx‛).export@b(A1) /Orderly storage

Segmented storage: salesagg.btx often performs segmented calculation (such as parallel query), so segmented storage should be performed.

 A B

1

=connect@l(‚db‛).cursor(‚select year(orderdate) as year,month(orderdate) month as

month,sellerid,sum(amount)sAmount,count(1) cQuantity from sales group by

year(orderdate),month(orderdate) ,sellerid‛)

/SQL sorting

2 =file(‚salesAgg.btx‛).export@z(A1) /Segmentation

Ordered segmentation: when a field is known to be used for segmentation calculation, it can be sorted and stored in segments according to the field.

 A B

1

=connect@l(‚db‛).cursor(‚select year(orderdate) as year,month(orderdate) month as

month,sellerid,sum(amount)sAmount,count(1) cQuantity from sales group by

year(orderdate),month(orderdate) ,sellerid order by sellerid‛)

/SQL sorting

2 =file(‚salesAgg.btx‛).export@z(A1;sellerid) /Ordered segmentation

Optimized storage

If you know the data characteristics of a simple table, you can use SQL + syntax for high-performance optimization queries.

select /*+parallel (4) */ * from sales.txt where orderid=100 Parallel computing

Large table cursor query select * from /*+external*/ emp.btx where orderid=100

select o.Orderid ,o.amount,s.name from sales.btx
o /*+foreign*/ join seller.btx s on s.id = o.sellerid

Ordered foreign table join

Note：Using SQL+statement，the url should be written as jdbc:esproc:local://sqlfirst=plus。

Extended reading：SQL+ http://doc.raqsoft.com/esproc/func/sqljia.html

SQL+ statement

http://doc.raqsoft.com/esproc/func/sqljia.html

There are three life cycles of cache: timed cache, temporary cache and controllable cache.

Timed cache: generates a cache in advance for multiple business algorithms.

The database table sales has frequent access and many algorithms will use it. Now it is cached as a simple table. The following script file can be
executed in the early morning of each Monday.

 A B

1
=connect@l(‚db‛).query@x(‚select orderid,client,sellerid,amount,orderdate

 from sales order by eid ‚)
Query data

2 =file(‚sales.btx‛).export@z(A1)
Create simple table

Business algorithm A： Group and aggregate by client, sellerid.

 A B

1 =file(‚sales.btx‛).cursor@b(A1) Open simple table

2 =A2.groups(client,sellerid;sum(amount):sAmount,count(1):cOrderid) Group and aggregate

Business algorithm B：Query records by ordered.

 A B

1 =file(‚salse.btx‛) Open simple table

2 =A2.iselect@b(10,orderid; orderid,client,amount) Orderly query

Life cycle

Temporary cache: generates a cache temporarily before calculation, which is generally used repeatedly in the local area by the current algorithm to reduce frequent query

actions of the database.

The front-end application needs to take large table data for page by page display. In this case, it can temporarily generate a simple table, which can greatly

improve the performance by using the I / O and ordered fetching of the simple table. In order to achieve this goal, the front end must pass in the unique

identification of the current algorithm, so that the same simple table can be used each time when fetching data, and the start and end positions of records

(which can be converted to page numbers) must be passed in, so that different pages can be fetched each time.

 A B C

1 =file(uuid)
Take the unique ID of the current algorithm as
the simple table name

2 if !A1.exists()
=connect@l("dbsource").cursor@x("select * from sales order by
orderid")

If the simple table does not exist, generate

3 =A1.export@z(B2)

4 =A1.iselect@b(begin:end,orderid; orderid,client,sellerid,orderdate,amount)
If the simple table exists, then fetch data by
page

Note： The temporary cache can be stored in the temporary directory specified by esProc, and the files in the directory will be cleaned automatically at regular intervals.

Life cycle

Controllable cache: the business algorithm controls the exact life cycle of the cache, which is used by the current algorithm or other algorithms.

When performing group aggregation calculation on the sales table, first check whether the timeliness of the cache is within one hour. If the timeliness is

met, the cache is directly used for calculation. If the timeliness has passed, the latest cache is temporarily generated. This cache can be used by this

algorithm and other algorithms.

 A B C

1 =file(“sales”)

2

if
interval@s(A1.date(),now())>=360
0
|| !A1.exists()

=connect@l("dbsource").cursor@x("select * from
sales order by orderid")

If the simple table times out or does not exist,
generate

3 =A1.export@z(B2)

4 =A1.groups(client,sellerid;sum(amount):sAmount) If the simple table exists, group and aggregate

Life cycle

In the pursuit of higher concurrency, more computation, more data (including data compression), high-performance index query, data

modification and other characteristics, you can use esProc group table format.

Regularly execute the SPL script (including the EPT script of the visualizer) to generate the cache. You can use the scheduling tool of the

operating system, such as scheduled task, crontab, or the third-party visualizer, such as opencron.

Other items for attention

CONTENTS

1. Java application integration

2. Report integration

3. Stored procedure outside database

4. Diversified data sources

5. Java algorithm outlay

6. Application data cache

7. Multi source hybrid computing method

8. ODBC and HTTP integration

Multi source hybrid computing method

Multi-source hybrid computing is one of the main uses of computing middleware. With highly encapsulated interfaces, esProc can simplify the hybrid computing

between any data sources.

The employee table is located in Oracle and the performance table is located in MySQL. Please join the two tables across databases and calculate the actual
salary.

employee(oracle)

key empID

empName

baseSalary

post

dept

performance(mysql)

key empID

bonus

Output result

key empID

empName

realSalary

post

dept

 A B

1 =connect(‚orcl‛).cursor@x(‚select * from employee‛) /Connect employee table

2 =connect(‚mysql‛).query@x(‚select * from performance‛) /Connect performance table

3 =A1.switch(empID,A2:empID) /Join across databases

4 =A3.new(empID.empID:empID,empName,baseSalay+empID.bonus:realSalary,post,dept) /Calculate real salary

Basic method

esProc uses a unified data model to access data sources, and can use the same method to calculate different data sources.

The employee table is located in Oracle, and the performance table is located in the text file. Please join the two tables across sources and calculate
the actual salary.

 A B

1 =connect(‚orcl‛).cursor@x(‚select * from employee‛) /Employee

2 =file(‚performance.txt‛).import@t() /Performance

3 =A1.switch(empID,A2:empID) /Join across sources

4 =A3.new(empID.empID:empID,empName,baseSalay+empID.bonus:realSalary,post) /Calculate actual salary

 A B

1 =file(‚employee.btx‛).cursor@b() /Employee

2 =file(‚performance.txt‛).import@t() /Performance

3 =A1.switch(empID,A2:empID) /Join across sources

4 =A3.groups(dept; sum(baseSalay+empID.bonus):realSalary)
/Actual salary of each

department

The employee information is in the simple table, and the performance information is in the text file. Please join the two tables across sources and
calculate the actual salary cost of each department.

Basic method

Application
system

Database

Historical data 1

Business logic

Business real
time table 1

Mixed calculation across sources[esProc]

File system Historical
data 1

Historical
data 2

Historical
data N

Historical
data 3

Scheduled caching
Fetch real time

data

Historical data t is stored in simple tables (group tables if amount is large) and real-time data 0 is stored in production database. By real-time mixed calculation

of the two, high-performance full amount of data query can be realized and precious production database resources can be saved at the same time.

Business real
time table 1

Business real
time table 1

Fetch historical

data

T+0 mixed calculation

The order history is stored in the simple table, and the real-time order data is stored in the production database. Please count the number of orders per

customer so far.

 A B

1
=connect(“db”).cursor@x(“select customer,count(1) total from sales where
orderDate=?”,now())

/Query database order of the day

2 =connect().cursor@x(“select customer,count(1) total from sales.btx”) /Query historical orders

3 =[A1,A2].conjx().groups(customer,sum(total):total) /Group aggregation again

Extended reading： For more comprehensive and detailed information about T + 0 real-time mixed calculation, please refer to

《Statistical Query after Database Split》

T+0 mixed calculation

http://c.raqsoft.com/article/1569381805397

The frequently accessed hot data can be cached at the near end of the application server, and the occasionally accessed cold data can be stored at the far end.

During the calculation, the cold data or hot data can be returned by judging the parameter interval.

Front end application

Near end hot data Simple table Embedded

database table

Group
table

Cold data

Remote data source

hadoop Database
table

Computing middleware

Java application

Parameter control

Nosql Xlsx Json mongoDB Xml

Cold and hot routing

TXT

The hot data of the current year (2016) is stored in the application server in the form of simple tables, and the cold data of previous years

(before 2016) is stored in the RDB data warehouse. Now, getdate.dfx is used to implement hot and cold routing and group aggregation

algorithm. When the upper Java program calls, the parameters pbegindate and penddate are passed in, that is, the starting and ending time

range of the required data.

 A B

1 =hotcoldLine=date("2016-01-01") /Cold and hot dividing point

2
=file(“saleshot.btx”).iselect@b(max(pBeginDate,hotcoldLine):max(pEndDate,hotcoldL

ine),

orderdate; orderid,client,sellerid,amount,orderdate)

/Fetch hot data

3
=connect@l("demo").cursor@x("select * from sales where orderdate>=? and

orderdate<?",min(pBeginDate,hotcoldLine),min(pEndDate,hotcoldLine))
/Fetch cold data

4 =A2|A3
/Combine cold and hot data, one of which may

be empty

5 =A4.groups(year(orderdate),month(orderdate);sum(amount):sAmount) /Calculate

Note： Cold data should be indexed according to the OrderDate field, and the group table can be sorted and segmented according to the OrderDate, so as to return quickly

when it is empty. The routing process can be separated into public script for specific script to call to reduce coupling.

Cold and hot routing

CONTENTS

1. Java application integration

2. Report integration

3. Stored procedure outside database

4. Diversified data sources

5. Java algorithm outlay

6. Application data cache

7. Multi source hybrid computing method

8. ODBC and HTTP integration

ODBC and HTTP integration

Oracle mySQL hadoop Web Service

Non java desktop

application

Business logic Script file

Data interface JDBC

Non Java Web

Application

Query interface ODBC driver

Call statement Call statement

Built-in

functions

External

library

External service ODBC service

SPL SPL

…

In addition to the JDBC interface, esProc also provides ODBC services to support non Java front-end applications, such as VB, C#, asp.net, crystal reports.

5. Execute the call statement in non java code, call the SPL file through
esProc ODBC, which interprets and executes the SPL file and returns the
calculation result.

1. Configure the running environment in raqsoftconfig.xml, no change.

4. Write specific business algorithm in SPL file，no change.

3.Deploy esProc ODBC driver

2. Start esProc ODBC service

ODBC integration

1. Configure the running environment in raqsoftconfig.xml, and there is no change in this step.

2. Start the esProc ODBC service. This step is the main change.

esProc provides a graphical interface to start ODBC service，please refer to http://doc.raqsoft.com.cn/esproc/tutorial/jsqzqdodbcfw.html

ODBC integration

Note：For details of ODBC deploy, please refer to http://doc.raqsoft.com/esproc/tutorial/odbcbushu.html

3. Deploy the ODBC driver of esProc. First, execute esprocodbcinst.exe with administrator permission to automatically deploy ODBC driver,

and then configure ODBC connection word in ODBC data source manager of windows.

ODBC integration

http://doc.raqsoft.com/esproc/tutorial/odbcbushu.html

4. Write the specific business algorithm in the SPL file. There is no change in this step.

5. Execute the call statement in the non java code. This step only needs to write the code according to the standard ODBC specification.

……
 OdbcConnection odbcConn = new OdbcConnection(“DSN=testOdbc;”);
 odbcConn.Open();
 OdbcCommand odbcCmd = new OdbcCommand(“call conj(?,?)", odbcConn);

 odbcCmd.Parameters.Add("minamount", OdbcType.Int).Value = 4000;

 odbcCmd.Parameters.Add("maxamount", OdbcType.Int).Value = 8000;
 ……

For example: in asp.net code, access the conj.dfx script file through ODBC.

ODBC integration

Oracle mySQL hadoop Web Service

Desktop application

supporting HTTP

interface

Business logic Script file

Data interface JDBC

Web application

supporting HTTP

interface

Query interface Java official HTTP client

url query statement url query statement

Built-in

functions

External

library

External service http service

SPL SPL

…

In order to provide loosely coupled data services (such as data in the middle), esProc provides HTTP services. It should be noted that in this

case, it is usually required to deploy esProc independently.

5. Use any language to access the SPL file through HTTP protocol. The HTTP service of

esProc interprets and executes the SPL file, and returns the calculation result.

1. Configure the running environment in raqsoftconfig.xml, no change.

4. Write specific business algorithm in SPL file and store it in file system.

3. Deploy the official HTTP client jar package of Java.

2. Start esProc http service.

HTTP integration

1. Configure the running environment in raqsoftconfig.xml, and there is no change in this step.

2. Start the HTTP service of esProc. This step is the main change.

esProc provides a graphical interface to start HTTP service，please refer to http://doc.raqsoft.com.cn/esproc/tutorial/httpfuwu.html

HTTP integration

3. Deploy the official HTTP client jar package of Java. This step has nothing to do with the specific HTTP service. Please refer to the official JAVA standard.

4. Write the specific business algorithm in the SPL file. The algorithm itself does not change in this step. Only the format of the returned data needs to be

processed.

 A B C

1
=connect@l(“demo”).query@x("select * from sales where orderdate>=?

and orderdate<?",beginDate,endDate)
 /Query database

The original algorithm (non HTTP service) queries the sales table. Begindate and enddate are external parameters. The script file is as follows:

If you want esProc to provide a restful JSON service, just use the JSON function to return the result.

 A B C

1
=connect@l(“demo”).query@x("select * from sales where orderdate>=?

and orderdate<?",beginDate,endDate)
 /Query database

2 =json(A1)

To access the HTTP service of esProc with a browser, you can see the
following data structure:

Note: if you want to return XML format, you should use XML function. If the returned result is not processed, the HTTP client receives a string in 2D table format, separated

by tab by default.

HTTP integration

Associate the salesperson with his / her order to form multi-layer JSON and return.

For Java middleware, it's difficult to return multi-layer JSON, while it's relatively simple to use esProc.

View return results in browser.

 A B

1 =connect@l("dbsource")

2 =A1.query("select * from employee")
=A1.query@x("select * from sales where orderdate>=?

and orderdate<?",beginDate,endDate)

3 =A2.run(eid=B2.select(sellerid==eid)) /Join

4 =json(A3)

HTTP integration

……
 URL url = new URL("http://192.168.1.107:8503/getsales.dfx(2010-03-01,2019-04-01)");

 HttpURLConnection httpUrlConn = (HttpURLConnection) url.openConnection();

 ……

5. Access the SPL file through HTTP protocol, which has nothing to do with the specific HTTP service. Note that the esProc HTTP service supports two URL styles.

Default style，http://IP:port /dfx1.dfx(arg1,arg2,...). Part of the code of Java calling esProc through HTTP protocol is as follows:

……
 URL url = new URL(“http://192.168.1.107:8503/getsales/2010-03-01/2019-04-01)");

 HttpURLConnection httpUrlConn = (HttpURLConnection) url.openConnection();

 ……

SAP style，http://IP:port /sapPath/dfx/arg1/arg2/.... The calling code is as follows:

HTTP integration

www.raqsoft.com

THANKS

