Agile data computing middleware

Implementation solution of application scenario o
of esProc

WWW.ragsoft.com




Architecture contrast

Computing middleware: a programmable general software between application and data, which can perform computing independently. It is often used to solve

problems such as loose coupling, high performance, special source computing, multi-source hybrid computing, complex logic, etc.

Traditional hard coding solution esProc solution

Java desktop Java Web
application application

Java desktop Java Web
application application

Front end application
Call statement Query statement

Query interface Invocation of hard coding type Query interface Embedded JDBC Driver

Business logic Java hard coding Java hard coding Business logic SPL script

Computing middleware

Built-in External
functions library

S Cem < NS Can & -

Data interface JDBC Java hard coding Data interface

Oracle mySQL hadoop Web Service Oracle mySQL hadoop Web Service

Note: This article focuses on the mainstream embedded and Java application architecture, and esProc also supports the independent and non Java

application architecture.



Similarity

Characteristic contrast

Main difference

» Consistent logical architecture

» Consistent implementation process

»  Front end application query interface
esProc solution: JDBC driver
Hard coding solution: Hard coding of basic class library

»  Business logic implementation
esProc solution: Structured computing function
Hard coding solution : Hard coding of basic class library

» Non database access interface
esProc solution: Access library function
Hard coding solution : Hard coding of basic class library



Advantages

esProc underlying capability Middleware feature Advantage

) _ ) o Reduce the coupling between algorithm and
Independent calculation script Separation of algorithm and main application Application

Hot switching possible

Reduce the coupling between Database and
Application

Complete computing class library Replace stored procedure SR R TG TTESEUTE

Independent of specific databases

Reduce the difficulty of development and
Direct hybrid computing of external maintenance

source and database Reduce intermediate table Reduce database pressure

Data in the database can be moved out

) ) Reduce database pressure
as files Reduce intermediate table

Support discrete dataset, ordered set,
process calculation, high performance
algorithm

Improve development efficiency

Can simplify complex calculation




CONTENTS

. Java application integration
. Report integration
. Stored procedure outside database lnteg ration

. Diversified data sources

. Application data cache

. Multi source hybrid computing method

1
2
3
4
5. Java algorithm outlay
6
7
8

. ODBC and HTTP integration




© Integration steps

Java application integrates esProc and calls the SPL script file.

4. Execute the call statement in the Java code, call the SPL file through the

Java desktop Java Web

" - JDBC of esProc, and the esProc JDBC interprets and executes the SPL file,
application application

and returns the calculation result.
Call statement Call statement

Query interface Embedded JDBC Driver | 1. Deploy the esProc driver jar packages in Java application.

Business logic | SPL Script file |

3. Write specific business algorithm in SPL file and store it in file system.

Built-in External

Data interface JDBC functions library

) ) 2. Configure the running environment in ragsoftconfig.xml, such as the
v v - LN | . . .
— — [ jdbc driver and URL of the data source (not esProc itself).

Oracle mySQL hadoop Web Service

Note: For esProc deployment and JDBC configuration, please refer to http://doc.ragsoft.com/esproc/tutorial/jdbcbushu.html

For JAVA calls esProc, please refer to http://doc.ragsoft.com/esproc/tutorial/bjavady.html



http://doc.raqsoft.com/esproc/tutorial/jdbcbushu.html
http://doc.raqsoft.com/esproc/tutorial/bjavady.html

Deploy esProc JDBC

The esProc JDBC provides an open and friendly interface for programmers to call esProc Middleware in JAVA applications.

Deploy method: Copy driver to Java application's classpath.

esproc_bin_xxxx.jar esProc computing engine and JDBC driver package

icu4j_60.3.jar Deal with internationalization
jdom—1 N .3.jar Parse configuration file
raqsoftConfig.me Running environment configuration file

Note: For deploy details, please refer to http://doc.ragsoft.com/esproc/tutorial/jJdbcbushu.html



http://doc.raqsoft.com/esproc/tutorial/jdbcbushu.html

Configure running environment

The running environment of esProc is stored in ragsoftconfig.xml, which is mainly the data source information of business database or data

warehouse, and also includes authorization, script file directory, character set, external library, etc.

Configuration information of an Oracle data source:

<DB name= “orcl">
<property name="url" value="jdbc:oracle:thin:@192.168.1.8:1521:runqgian"/>
<property name="driver" value="oracle jdbc.driver.OracleDriver"/> ]
<property name="type" value="1"/>
<property name="user" value="ydxx"/>

<property name="password" value="password"/>
<property name="batchSize" value="0"/>

[ e e

Note: The JDBC package of the data source is also deployed in the classpath.

For detail configuration of ragsoftConfig.xml, please refer to http://doc.ragsoft.com/esproc/tutorial/jdbcbushu.html



http://doc.raqsoft.com/esproc/tutorial/jdbcbushu.html

Configure running environment

Similarity

»  The deployment method is similar

>

Follow the same set of interface specifications

esProc JDBC vs Data source JDBC

Main difference

» Calling location

esProc JDBC: in java application
Data source JDBC: in esProc script file

» Calling method

esProc JDBC: java code
Data source JDBC : SPL function

>  Effect

esProc JDBC: Access esProc script file to get the calculation
results of the business algorithm.

Data source JDBC: Access database / warehouse to obtain raw
data.



Script file I]E

The SPL script file is the business middleware algorithm, which is written by the programmer. Generally, it needs to fetch data from the data source,

then realize the business algorithm, and finally return the calculation result to the main program by the JDBC.

Example: orcl is database data source, and java application needs to fetch data from sales table. Some of the data are as follows:

1 UJRNP 17 392 2012/11/2 15:28
2 SJCH 6 4802 2012/11/9 15:28
3 UJRNP 16 13500 2012/11/5 15:28
4 PWQ 9 26100 2012/11/8 15:28
5 PWQ 11 4410 2012/11/12 15:28

The performance of the original single thread fetching is poor. The following is to use esProc as the middleware, use the 8-thread parallel query, and merge the query
results. The script file conj.dfx is as follows:

A B C
=8.(range(1,100000000L,~:4)) /
fork Al =connect("dbsource") /Multi-thread parallel
=B2.query@x("select * from sales where orderid>=? and
orderid<?",A2(1),A2(2))

=A2.conj() IMerge and output

/Query in thread

BN w N B

Note: The starting and ending range of OrderID is 1-100000000L. A1 code divides it equally into eight time intervals, one for each thread. For example,
thread 2 is 12500000-25000000.



Script file

Java application calls script file through esProc JDBC. PN . |
Class.forName("com.esproc.jdbc.InternalDriver");

i con=DriverManager.getConnection("jdbc:esproc:local://");
| PreparedStatement pstmt = con.prepareStatement( “call conj()");
' ResultSet rs=pstmt. executeQuery()

The script file can take parameters, such as filtering data by order amount range (minamount, maxamount). The script file is as follows:

A B C
1 =8.(range(1,100000000L,~:4)) /
2 fork Al =connect("dbsource") /Multi-thread parallel
=B2.query@x("select * from sales where orderid>=? and
3 orderid<?“ and amount>=? and amount<?, IQuery in thread
A2(1),A2(2),minAmount,maxAmount)
4 :AZ.COHj() /Merge and output

At this time, java code should be written according to
parameter query:

pstmt.setObject(1, 4000);pstmt.setObject(2, 8000);
ResultSet rs=pstmt. executeQuery()

oooooo

| //Can also be written as call conj(4000,8000)

//For more contents on Java calls esProc, please refer to http://doc.ragsoft.com/esproc/tutorial/bjavady.html

PreparedStatement pstmt = con.prepareStatement( “call conj(?,?)" );


http://doc.raqsoft.com/esproc/tutorial/bjavady.html

Script file

The data source can also be text, Excel, etc.

The source data is the tab separated text file

sales.txt. The first few lines are as follows:

Query by parameter, group by client and sum the

amount. The script file run.dfx is as follows:

The above scripts can also be combined into one
sentence:

The calculation result is as follows:

i ordered client sellerid amount orderdate i
i1 UJRNP 17 392.0 2012-11-02 15:28:05 i
12 SJCH 6 4802.0 2012-11-09 15:28:05 !
1
'3 UJRNP 16 13500.0 2012-11-05 15:28:05 i
A B

1 =file("d:/sales.txt").import@t() /Open txt file

2 =Al.select(amount>=minAmount && amount<maxAmount)  /Parameter query

3 =Al.groups(client;sum(amount):sAmount) /Group and aggregate

A

=file(“d:/sales.txt”).import@t().select(amount>=minAmount
&&amount<maxAmount).groups(client;sum(amount):sAmount)

AVU 482640
AYWYN 455320
BTMMU 496226



Script file

As a comparison, we use Java hard coding
(traditional computing middleware) to

implement the grouping aggregation algorithm.

public int compare(salesRecord s1, salesRecord s2) {
if (!s1.client.equals(s2.client)) {
return sl.client.compareTo(s2.client);
}else{
return s1l.ID.compareTo(s2.1D);

Collections.sort(sales, comparator);
ArrayList<resultRecord> result=new ArrayList<resultRecord>();
salesRecord standard=sales.get(0);
float sSAmount=standard.value;
for(inti = 1;i < sales.size(); i ++){
salesRecord rd=sales.get(i);
if(rd.client.equals(standard.client)){
sAmount=sAmount+rd.value;

telse{
result.add(new resultRecord(standard.client,sAmount));
standard=rd;
sAmount=standard.value;

}

result.add(new resultRecord(standard.client,sAmount));
return result;



Script file

SPL script files are stored in the operating system directory.

Generally, it is recommended to divide directories by functional modules, or by application type, time and version.

-Main Directory
-Customer management
-run.dfx()
-Attendance performance
-Enterprise resource management
-Financial management
-Fixed assets statistics.dfx
-Cash flow query.dfx
-Bad debt early warning analysis.dfx

-Inventory management



Query statement I]E

If the script file is simple, the SPL query statement can be used instead of the SPL call statement + script file. The former is similar to Java calling

SQL statements, and the latter is similar to calling stored procedures.

Java desktop Java Web
application application 3. Directly implement business logic through query statements:

Business logic Query statement Query statement

Query interface Embedded JDBC Driver

1. Deploy the esProc driver jar packages in Java application.
Built-in External

functions library

S Smm 3 = .

Oracle mySQL hadoop Web Service

Data interface JDBC

2. Configure the running environment in ragsoftconfig.xml.




Query statement I]E

SPL call statement + script file

SPL query statement

PreparedStatement pstmt = Preparedstatement pstmt = .
con.prepareStatement( “call run(?,?)" ); ;: Zgl'sgte(gzgifttfnent(u=flIe(\"dz/sales't)(t\mmport@t(
pStmt-SetObJ.eCt('l ' 4000){ &&amount<?).groups(client;sum(amount):sAmount)");
pstmt.setObject(2, 8000); pstmt.setObject(1, 4000);

ResultSet rs=pstmt. executeQuery() pstmt.setObject(2, 8000); );

ResultSet rs=pstmt. executeQuery()

run.dfx

............A____

=file(“d:/sales.txt”).import@t().select(amount>=minAmount
&&amount<maxAmount).groups(client;sum(amount):sAmount)



CONTENTS

. Java application integration
. Report integration
. Stored procedure outside database lnteg ration

. Diversified data sources

. Application data cache

. Multi source hybrid computing method

1
2
3
4
5. Java algorithm outlay
6
7
8

. ODBC and HTTP integration




Integration steps I]E

Java report tool is a kind of Java application, in which report IDE is generally desktop application and report service is generally web application.

Both of them can integrate esProc to realize the computing middleware.

4. Create a new stored procedure dataset in the report, call the esProc script file, or

o lbE RO S create a new SQL dataset, and write the SPL query statement directly.

Call statement Call statement

Query interface Embedded JDBC Driver 1. Deploy the esProc driver jar packages in IDE or web service.

3. Write specific business algorithm in SPL file and store it in file system.

Business logic | Script file | SPL

_ Built-in External
Data interface JDBC functions library

S mm (8 =F .

Oracle mySQL hadoop Web Service

2. Configure the running environment in ragsoftconfig.xml, such as the jdbc driver
and URL of the data source (not esProc itself).




Deploy esProc JDBC

The report tool deploys the esProc JDBC in the same way as the common Java application does.

For example, to deploy in the IDE of open source reporting tool BIRT, you only need to copy the esProc driver to:
[Installation directory]\plugins\org.eclipse.birt.report.data.oda.jdbc 4.6.0.v20160607212
The way to configure ragsoftconfig.xml remains the same, and we won't go into details here.

Some reporting tools provide a visual interface, which makes it easier to specify the driver jar package, such as JasperReport.

fx Options
W % B é
3 2 B\ 3 LS
iReport General Editor Fonts & Colors Kevmap Miscellaneous
Queryv Executers Export options JasperReports Properties Heartbeat JasperReports Server Repository
General Classpath Fonts Viewers Wizard Templates Comnpllation and execution
Classpath
Fath Reloadable Add JAR
D:%software2'\Jaspersoft\iReport—3. 6. 0\ ireport\nodulesexth jasperreports—extensio. .. Add Folder
Lhsoftwarai\ TasnersaftiiRenort—5, A O\irenortinagdul as'exth jasnerranaris—core—ten
D:%software2'Jaspersoft\esProchesproc—hin-20210811. jar Remove
D:\software2'\JaspersoftesProc\lcudj—60. 3. jar
D:%software2'\Jaspersoft\esProch jdon—-1. 1. 3. jar Move up
D:\software2)\JaspersoftiesProch\config
Hove down
E Advanced Optiens i 0K Cancel

Note: In the above figure, ragsoftconfig.xml is placed in the config directory, and it can also be copied to any jar package.




[=3

Report calls esProc script

After writing the script file, you should first establish the data source in the report IDE and point to esProc. Take the BIRT report as an example.

Driver Class selection: com.esproc.jdbc.IntervalDriver (v1.0)

Database URL: jdbc:esproc:local://
JNDI data source name: Free to fill in

& Edit Data Source - esProcConnectio O *
BIRT JDBC Data Source Edit the selected data source.
Connection Profile
Property Binding Driver Class: |l:cum.esprcuc.jdbc.lnternalDriver v1.0) ~
Database URL: |jd|::u::|35|::|r-::u::|::|r:a|:,-',lr
User Name: |
Password: |
JNDI URL: |esF’rocC0nnection

Manage Drivers... | | Test Connection...| | Bidi Settings...




Report calls esProc script
Create a new stored procedure dataset, similar to database stored procedures.

Choose esProc as data source, and call esProc script file.

& Mew Data Set O o & Edit Data Set - VerticaExternalProcedure O
Mew Data Set " : . .
Data Source Define a sql query text using available items. ~
Create a new data set. Query
Qutput Columns Available ltems: " Query Text:
Data Source Selection Computed Columns v [J esProcConnec il{call run{?. ?}}
Parameters
ype fiter tox | s [E] STORED Pl
Filters
w JDBC Data Source Property Binding
RACQDemo_SOLite Settings
esProcConnection Preview Output Param
Preview Results

Data Set Type:

SQL Stored Procedure Query w
Filter:

Data Set Mame:

Type: -All- v
rumn £ > < >

= Back Mext = Finish Cancel

o[ o




€) Report calls esProc script

Set parameters, design reports, and preview reports. The usage is the same as ordinary data sets.

pH Edit Data Set - SampleSat I ;_J

-~ Data Source

- Query
- Qutput Columns
- Computed Colurr

Parameters R

o Edit Parameter : _)g

BIRT Report Viewer

- Parameters Name Iparaml
- Filters - — |
- Property Binding ~ Data Type Shvina S
- Cache Preferenc 2 2 mVerticaRepurt.rptdesign &5 -
Direction
- Preview Results [ 350 D2 , 3. . 4. . s, e, :
Default Yalue
Linked To Report P. -

ORDERID
(ORDERD) CRCRE NS
Showing page 1 of 2
Bl Table ORDERID CUSTOM EMPID SUBSCRIPTIONDATE SALESAMOUNT
10883 QUICK 2 20152828 TF 17250
12:00
11030 SAVEA 7 20154 H17H T 16321, 9
F12:00
10981 HANAR 1 201538278 T 15810
F12:00
10817 KOENE 3 20151860 T F 11490, 7
12:00
10889 RATTC g 20152180 T 11330
F12:00
10887 HUN 3 2015%F2H18H T 10835, 24
F12:00
11032 WHITC 2 20154817 T 8902, 5
F1z2:00

1NR1A

CREAT

TmMEEIBAA T

ARa1



Algorithm example I]E

Horizontal columns: use the column number pColNum as the parameter to place the employee table in horizontal columns in the report.

When pColNum = 2, the report should present: When pColNum = 3, the report should present:

NAME DEPT |EID2 NAME2 |DEPT2 NAME DEPT NAME2 DEPT2 NAME3 DEPT3

1Rebecca R&D 2 Ashley Finance 1 Rebecca 2Ashley  Finance 3Rachel  Sales
3Rachel  Sales 4 Emily HR 4 Emily HR 5Ashley R&D 6 Matthew Sales
5Ashley R&D 6 Matthew Sales 7 Alexis Sales 8Megan  Marketing 9Victoria HR
7 Alexis Sales 8Megan Marketing 10Ryan R&D 11 Jacob Sales 12 Jessica  Sales
9Victoria HR 10Ryan R&D 13 Daniel Finance 14 Alyssa  Sales 15 Alexis Sales
11 Jacob Sales 12 Jessica  Sales 16 Christopher  Production 17Hannah  Marketing 18 Jonathan Administration
A B C

1 =demo.query("select Eld,Name,Dept from employee ")

2 =A1l.step(pColNum,1) /Take the first column, as intermediate result

3 for to(2:pColNum) =AT.step(pColNum,A3) /Take the Nth column

4 =A2=A2 join(#,B3:#EID:${"EID"/A3}, /Add column N to the right of the intermediate result

NAME:${"DEPT"/A3}, DEPT:${"DEPT"/A3}) as the new intermediate result
5 return A2 /Return the final result

Note: Macro in the dynamic syntax of esProc is used in the algorithm, please refer to http://doc.ragsoft.com/esproc/tutorial/huoyongzifuchuan.html# 141
The algorithm uses the method of join by sequence number , please refer to http://doc.ragsoft.com/esproc/func/join.html



http://doc.raqsoft.com/esproc/tutorial/huoyongzifuchuan.html
http://doc.raqsoft.com/esproc/func/join.html

CONTENTS

. Java application integration
. Report integration

. Stored procedure outside database Stored procedure

. Diversified data sources

. Application data cache

. Multi source hybrid computing method

1
2
3
4
5. Java algorithm outlay
6
7
8

. ODBC and HTTP integration




€ Implementation ideas I]E

Instead of the stored procedure of the database, esProc script is used to decouple the business algorithm and the application program.

Java desktop
application

Java desktop

Java Web application o
application

Java Web application

call statement call statement call statement Java hard coding
Query interface Source database JDBC Query interface esPro: JDBC Class call

Business SPL

algorithm Script file Java hard coding

Business

[ Data interface Source database JDBC
algorithm Stored procedure Stored procedure

Database Database Database Database Database Database

table table table table table table




Algorithm example Switch data source with the same structure

[=3

History and current are two databases of the same type with the same structure but different data. When querying and calculating, the middleware needs to select which

database to use through parameters. The following is implemented with esProc switch.dfx script.

A B

=${pSource}.query( “select * from sales” )

pSource is a macro parameter representing the data source name. If the pSource value in the Java program is "history", the query is executed on

history database, that is:

PreparedStatement pstmt = con.prepareStatement(“call switch(?)");

_ o ., 1UJRNP 17 392 2012/11/2 15:28
pstmt.setObject(1, “history”) 2SJCH 6 4802 2012/11/9 15:28
pstmt.execute() 3UJRNP 16 13500 2012/11/5 15:28
The calculation result is shown on the right: 4PWQ 9 26100 2012/11/8 15:28

5PWQ 11 4410 2012/11/12 15:28

If the pSource value is "current”, the calculation result is different.
982 SJCH 12 10900 2019/7/12 15:28

983 GLH 13 8330 2019/7/14 15:28

984 SJCH 19 5684 2019/7/20 15:28

985YZ 14 27100 2019/7/13 15:28

986 HANAR 10 11100 2019/7/15 15:28



Algorithm example Switch data source with different structure

Application systems may be migrated between multiple databases, such as Mysql to Oracle, with different database structure. The standard SQL
independent of the database is used in development, and the SQL statement does not need to be modified during migration. Only the database type

is passed into the script file as a parameter, which can be translated into a specific database SQL. The following is the script file run.dfx.

A B

select left(client,2),year(orderDate) y,sum(amount) sAmount from sales group by

' /SPL standard SQL
left(client,2),year(orderDate) standard SQ

[Translate standard SQL into SQL of specified database according to
parameters

2 =Al.sqltranslate(sqlType)

3 =connect@I("dbsource").query@x(A2) [Execute translated SQL

If the sqltype value in the Java program is "MySQL", the SQL in A2 will be translated as:
select left(client,2), y,sum(amount) sAmount from sales group by left(client,2),year(orderDate)

If sqltype is “Oracle” , the translation result of A2 is:
select left(client,2), y,sum(amount) sAmount from sales group by
left(client,2),EXTRACT(YEAR FROM orderDate)



2

For many algorithms databases are difficult to implement, or some databases are difficult to implement. For example, the external parameter pclient is a dynamic list of

major customers. Please count the order amount in the order of the list. If pclient = ["HL", "MIP", “SJCH"], the calculation result should be as follows:

client samount

HL 305320
MIP 397000
SJCH 500298

Use esProc script file to implement:

A

1 =connect@I("dbsource").query@x("select client,sum(amount) sAmount from sales where client in(?) group by client ",pclient)

2 =A2.align(Al,client)



CONTENTS

. Java application integration
. Report integration

. Stored procedure outside database data sources

. Diversified data sources

. Application data cache

. Multi source hybrid computing method

1
2
3
4
5. Java algorithm outlay
6
7
8

. ODBC and HTTP integration




Special data sources

Scenario: for special data sources such as WebService, mongodb, hive, etc., esProc provides an external library interface. With the jar package

provided by the data source, it can realize a convenient and fast special source computing middleware.

Ele Edt Program{oo)) Window Help
J & [ T @ -]
AE =
& mongo ot |
Take mongodb for example, first File H i—
[ File Resource | i
e}
3

configure the external library

smango_opanrmangadb

it File Resource General | Environment | Appearance oK
B 5] Dvagsofdies =mongo_shell@xial "ampl : :
T " Cancel
=MeCermp. o). createl®_id] Log file name DuragsoftbdlesProcloglesproclog Browse
4 |=Adappend{Al) Searching path 2emo | [ select external libraries x
s kain path Dwagsq Exernal liprary direclory | DivagsofS4iexdis Browse O
I Nole: Relabwe path does not statw] po |:|I1'E-L'|EIF!|’ nams Seledt I Cancsl
T Temp path 1 |AlidoudCli o
g 2 |DatastaxCh
9 Initialization program 3 | ElasticsearchCli
” Extormal brary Sirecto SR
5  |HbaseCl
" Diate formmia & | HdsFiled
12 T |Hivedli
- Drate e Tormiat B |Hw"
pna .
y [ Local host 9 |WiomixCH
10 |KafeaCli
15 File bullen(Eyie) <IT_ MongoCH N
16 Composite lable block size (Byle) 12 |Clwpdica
97 13 |RedisCh
14  |RepodSCH
18 15 |SalestorcaChi
18 16 |SapCH
70 17 | SparkCli 1
18 |WebcrawiCli r "
19 WebseniceCli w
Restart IDE fo load exdernal brarias




Special data sources

Put mongodb's jar package in the mongodb directory of the external library, as follows:

LENOVO (Dx) raqsoftbd extlib MongodbCli

=5 e =2

B bson-3.6.3 arjar 2008/1/6 11:11 JAR 3T
B mongodijar 2018/3/21 19:16  JAR 3%
B mongo-java-driver-3.6.3.jar 2008/1/6 11:11 JAR {4

In the script file, use the shell command to query the EMP collection, complete the query and group calculation.

A B
1 =mongo_open("mongodb://192.168.1.7:27017/mydb")  /connect
2 =mongo_shell@x(Al,"emp.find()") /Query
3 =A2.groups(department;count(empid):total) /Group and aggregate

Extended reading: For more external library usage, please refer to http://doc.ragsoft.com/esproc/func/wbk.html



http://doc.raqsoft.com/esproc/func/wbk.html

SQL syntax

For text and excel, esProc provided built-in functions to access, such as the previous example: text grouping summary.

A B
1 =file("d:/sales.txt").import@t() /Open txt file

2 =Al.groups(client;sum(amount):sAmount) /Group and aggregate

In addition to the built-in functions, esProc also provides SQL syntax, which can access the text in a more convenient way. The above script can be written as a
SQL in Java:

_____________________________________________________________________________________________________________________________________________

Class.forName("com.esproc.jdbc.InternalDriver");
con=DriverManager.getConnection("jdbc:esproc:local://");
ResultSet rs = con.executeQuery(“select client, sum(amount) sAmount from d:/sales.txt")



SQL examples

Filter select ID,NAME,GENDER,AGE from students.txt where GENDER='F' and AGE>?24

select ID,NAME,GENDER,AGE from students.xlsx order by AGE

select ID,NAME,GENDER,AGE from class1.txt union select
ID,NAME,GENDER,AGE from class2.xls




Merge of data from multi databases HB

Background: the same logical table is scattered in multiple physical databases, and such data is merged and calculated.

MySQL stores the order data of 2015, Oracle stores the data of 2013-2014. Please merge the data of the two databases and return.

A B
1 =connect("org.hsqldb.jdbcDriver","jdbc:hsqldb:hsql://127.0. =connect("com.mysqgl.jdbc.Driver","jdbc:mysql://127.0.0.1:3306/
0.1/demo?user=sa") demo?user=root&password=password")
2 =Al.query@x("select * from sales") =B1.query@x("select * from sales")
3 =A2|B2

Please merge the data of two databases and sort by order amount.

A B
1 =connect("org.hsqldb.jdbcDriver","jdbc:hsqgldb:hsql://127.0. =connect("com.mysql.jdbc.Driver","jdbc:mysql://127.0.0.1:3306/
0.1/demo?user=sa") demo?user=root&password=password")
2 =Al.query@x("select * from sales order by amount") =B1.query@x("select * from sales order by amount")

3 =[A2,B2].merge(AMOUNT)



CONTENTS

. Java application integration
. Report integration

. Stored procedure outside database algorithm OUtIay

. Diversified data sources

. Application data cache

. Multi source hybrid computing method

1
2
3
4
5. Java algorithm outlay
6
7
8

. ODBC and HTTP integration




© Algorithm outlay HB

The algorithm is placed outside in the file system, and the call statement (string) is used to reduce the coupling between the main program and
the algorithm.

Algorithm built-in Algorithm outlay

Java main program Front end application Java main program

Class method Class method Call statement Call statement

Query interface Class call (highly coupled) Query interface JDBC ( Low coupling )

) ) File system
Computing middleware Interpret and
execute

Jar package

Compile and Java hard coding Java hard coding
execute

SPL file SPL file

. Built-in External
Datainterface JDBC functions library

S Coe b < [ CaR B -

. Built-in External
Dalainteriace JDBC functions library

Oracle mySQL hadoop Web Service Oracle mySQL hadoop Web Service



Algorithm outlay

Hot switch: after the business algorithm is modified, it can be replaced directly without compilation or downtime.

The business algorithm queryorder.dfx originally needs to query the text file.

A B
1 =file("sales.txt”).import@t() /Open the text file
2 =Al .SeleCt(Orderl D::pC”ent) /Return query result. pClient is parameter, representing customer number

Change the algorithm to query data from excel and directly cover the original algorithm.

A B
1 =file("sales.xlIsx”).xIsimport@t() /Open Excel fle

2 =Al.select(orderID==pClient) [Return query reslt.



Json calculation

In order to reduce system coupling completely, some Java applications need to get data from microservices, which requires that Java programs

have the ability to calculate JSON.

Access the microservice, read the multi-layer JSON, calculate the order amount of each employee, as a new field amount of employee

record, the result is output as a two-dimensional table. The source data JSON is as follows:

[{
"EID":1,"NAME":"Rebecca","SURNAME":"Moore","GENDER":"F","STATE":"California","BIRTHDAY":"1974-11-20","HIREDATE":"2005-03-

11""DEPT":"R&D","SALARY":7000,
"orders":[{"ORDERID":14,"CLIENT":"JAYB","SELLERID":1,"AMOUNT":7644.0,"ORDERDATE":"2012-11-16 15:28:05"},
{'ORDERID":77,"CLIENT":"HANAR","SELLERID":1,"AMOUNT":13200.0,"ORDERDATE":"2013-01-17 15:28:05"},
{"ORDERID":78,"CLIENT":"YZ","SELLERID":1,"AMOUNT":11600.0,"ORDERDATE":"2013-01-20 15:28:05"}

]
A
"EID":2,"NAME":"Ashley","SURNAME":"Wilson","GENDER":"F","STATE":"New York","BIRTHDAY":"1980-07-19","HIREDATE":"2008-03-

16","DEPT":"Finance","SALARY":11000,

"orders":[{"ORDERID":7,"CLIENT":"EGU","SELLERID":2,"AMOUNT":17800.0,"ORDERDATE™":"2012-11-06 15:28:05"},
{"ORDERID":19,"CLIENT":"JOPQO","SELLERID":2,"AMOUNT":3430.0,"ORDERDATE":"2012-11-18 15:28:05"},
{"ORDERID":46,"CLIENT":"UJRNP","SELLERID":2,"AMOUNT":1274.0,"ORDERDATE":"2012-12-20 15:28:05"}

]
H
"EID":3,"NAME":"Rachel","SURNAME":"Johnson","GENDER":"F","STATE":"New Mexico","BIRTHDAY":"1970-12-17","HIREDATE":"2010-12-

01","DEPT":"Sales","SALARY":9000,
"orders":[{"ORDERID":17,"CLIENT":"PJIPE","SELLERID":3,"AMOUNT":7154.0,"ORDERDATE":"2012-11-19 15:28:05"},

[=3



Json calculation I]E

Using esProc external algorithm, and the script is as follows:

A B
1 =httpfile("10.0.0.4:8080/recordQuery?comp=cidc").read() /read microservice
2 =_jSOI‘1(A1 ) /Convert JSON to sequence table
=A8.new(EID,NAME,SURNAME,GENDER,DEPT,SALARY,orders.sum(AM

/Calculate employee's order amount

OUNT):sAmount)

ORDERID | CLIENT SELLERID & AMOUNT ORDERDATE
Calculation result of A2 RNAME| GENDER| STATE | BIRTHDAY | HIREDATE | DEPT |SALARY|  orders 14| JAYB 1| 7644.0|2012-11-16 15:28:05

Bore F California | 1974-11-20 | 2005-03-11 |R&D 7000 [[1:.J#.‘r'E.1../' 77| HANAR. 1| 13200.0|2013-01-17 15:28:05
2| Ashley Wilson F Mew York | 1980-07-19 | 2008-03-16 |Finance 11000 | [[7 EGU.2, ... 78 |YZ 1| 11600.0|2013-01-20 15:28:05
3| Fachel Johnson | F Mew Mexico | 1970-12-17 | 2010-12-01 | Sales 9000 | [17,PJIPE,..]
4| Emily Smith F Texas 1985-03-07 | 2006-08-15 |HR 7000 | [[16,AYWY ... ORDERID | CLIENT | SELLERID | AMOUNT ORDERDATE
5| Ashley Smith F Texas 1975-05-13 | 2004-07-30 |R&D 16000 [[21.DILRT._\> 21| DILRT 5| 16900.0|2012-11-29 15:258:05
34 |HANAR 5 784.0(2012-12-12 15:28:.05
43 |HANAR 5 196.0 | 2012-12-15 15:28:05
EID MNAME SURMNAME | GEMDER DEPT SALARY sAmount
Calculation result of A3 1|Rebecca Maoore F RED 7000 324440
2| Ashley Wilson E Finance 11000 22504.0
3|Rachel Johnson F Sales 8000 55154.0
4| Emily Smith F HR 000 33364.0
5| Ashley Smith F R&D 16000 17880.0



Json calculation esProc can also parse JSON parameters

Example: query the order table according to the start date, end date and customer list. Parameters are passed in the form of JSON
string (named pjson), as follows:

{beginDate:2012-01-01, endDate:2012-12-10,
clientList:[{client:UJRNP} {client:UJRNP},{client:PWQ}]

}

Use script file to implement query.

A B @
1 =json(pJson)
2 =beginDate=A1.beginDate =endDate=AT.endDate ;,ert to date type
3 =clientList=A1.clientList.(client) /Resolve clientList
=demo.query("select * from sales where orderdate>=?

4 and orderdate<? and client
in(?)",beginDate,endDate,clientList)

/Execute SQL with parameters

The return result of the above algorithm is a two-dimensional table. If the Java main program needs the algorithm to return JSON
format, write the following in cell A5:

5 =json(A4)

/Convert JSON parameter to sequence table
/Resolve start and end date parameters, and automatically



CONTENTS

1. Java application integration

2. Report integration

3. Stored procedure outside database CaChe
4. Diversified data sources

5. Java algorithm outlay

6. Application data cache

7. Multi source hybrid computing method

8. ODBC and HTTP integration




€ Application Architecture I]E

When the source database is under great pressure, the intermediate data should be calculated in advance so that the application server can access it quickly.

The intermediate data is often cached in the source database before, and can be cached in the application server after using the middleware of esProc.

Use database to store intermediate result Use esProc simple table to store intermediate result

Java application Java application

Call statement Query statement Call statement Query statement

Query interface Database JDBC driver Query interface esProc JDBC driver

Business logic SPL

Script file

Business logic Stored procedure

Intermediate data Simple
table

Data interface
Intermediate data Database Database
table table

1 /\\
I 7 o
v Re Sa
Business data Source Source Source Business data Database Source Source
database database database table database database
table table table table table




Simple table and database table

Simple table: the intermediate data is stored in the application server without consuming database resources.

Database table: the intermediate data is stored in the source database, which still consumes database resources.

[ e ] e
Sufficient structured algorithms Sulfficient structured algorithms

High performance addition Append relatively slowly

Not good at Be good at

No physical foreign key and constraint relationship Can have physical foreign key and constraint relationship
Natural order Order by is required due to uncertain order

Arbitrary segmentation, simple way Use where segmentation in a complex way

Support Not supported



Select cached data

Data suitable for caching: intermediate tables with complex algorithm and large calculation amount such as summary statistics.

Data that does not need to be cached: business tables that are not computationally stressed.

Source database
Accounting balance table (Intermediate table with complex -ERP
algorithms)
Budget risk assessment ( Intermediate table with complex - F| Nna ncia| ma nagement
algorithms )

esProc simple table

alance sheet.btx

General ledger summary (Summary intermediate table)

Customer churn Statistics (Summary intermediate table )

udget risk assessment.btx

Monthly sales ( Summary intermediate table )

eneral ledger summary.btx
Financial general ledger (business table)
Budget table ( business table )
Order table ( business table )

-Sales management

i

ustomer churn statistics.btx

Customer table ( business table )

Sales table ( business table ) -Monthly sales.btx
-CRM...

Note 1: if necessary, frequently accessed business tables can also be cached.
Note 2: the simple table is stored in the operating system directory, which can be divided by functional modules or by application type, time and version.



Generating simple tables I]E

The most direct and simple way: export the intermediate table in the source database as a simple table.

In the source data, the aggregation intermediate table salesAgg is generated according to the business table sales. Some of the data are as follows:

year _____Imonth __sellerid __samount _lcquantity |

2012 35792 3

2012 11 6 4802 1

2012 11 16 39334 3

2012 11 9 26100 1

2012 11 11 25610 2

Export salesAgg as a simple table: A B

1 =connect@I(“db").cursor(“select * from salesAgg”) /SQL fetch data
2 =file("salesAgg.btx").export@b(A1) /Create simple table

After reading the simple table, you can see that its data is the same as the intermediate table.

year ___|month __isellerid _Isamount lcquantity |

2012 35792 3

- = 2012 11 6 4802 1

1 =file( "salesAgg.btx” ).import@b() /Read simple table AU 1 16 39334 3
2012 11 9 26100 1

2012 11 11 25610 2



Generating simple tables

More common way: use SPL script to transform (replace) the generation process of the original intermediate table, and generate the simple

table directly from the business table.

Generate a simple table directly with business table sales:

A

=connect@I|("db").cursor(“select year(orderdate) as year,month(orderdate) month
/SQL fetch data

as month,sellerid,sum(amount)sAmount,count(1) cQuantity from sales group by
year(orderdate),month(orderdate) ,sellerid”)

/Create simple table

2 =file("salesAgg.btx").export@b(AT)



Incremental addition Scenario: it is applicable to appending data to historical simple table regularly. I]E

Note: the source data must have a time stamp for increment.

Take yesterday's incremental data from the business table sales in the early morning of each day and add it to the simple table salesagg.btx.

A B
=connect@I( “db" ).cursor@x( “select year(orderdate) as year,month(orderdate) month
1 as month,sellerid,sum(amount)sAmount,count(1) cQuantity from sales Take incremental data by date

where orderdate=? group by year(orderdate),month(orderdate), sellerid “, pDate)
Append to existing simple table

2 =file( "salesAgg.btx.btx" ).export@ab(A1)

Note 1: The simple table cannot be modified. If the data changes, the simple table should be regenerated. esProc group table is used for data warehouse, and this file format
supports modification.

Note 2: The way to take incremental is flexible. You can get data by time interval or by date. In the above example, pdata is a parameter, which is used to calculate yesterday's
date from the outside and pass it in, so that it is convenient to control which date of data to append. If you want to extract yesterday's data, you can also use the SPL
expression date(elapse(now(),-1)) instead of pdate.

Extended reading: Oracle has a unique incremental addition method of OGG, which is supported by esProc. For details, please refer to OGG Incrementally collected data
importing into database



http://c.raqsoft.com/article/1571710559731
http://c.raqsoft.com/article/1571710559731
http://c.raqsoft.com/article/1571710559731

Using simple table

Simple table supports esProc SQL syntax, and examples of usage are as follows:

select * from salesAgg.btx where samount>=10000 && samount<20000

ACICCEIEN  select year, month, sum(samuont) as total from salesAgg.btx group by year,month

select s.year, s.month, e.name from salesAgg.btx s, employee.btx e where s.sellerid=e.eid




Using simple table

When the business logic is complex, the SPL script should be used for calculation.

[=3

Example: Stockagg.btx, a simple table generated by the inventory table, records the entered and issued quantity of each product every day. Part of the data is as

follows:

IDATE
2014-04-01
2014-04-02
2014-04-03
2014-04-04
2014-04-07

[tem

[tem1

[tem

[tem

[tem1

IMAME

ENTER ISSUE
19 0
10

| O L 2

Query the simple table by time period, and calculate the following inventory status: open, enter, total, issued, and close of each product every day.

for A2

HWN=

~N O

return B6

A

=fle( “stockAgg.btx” ).import@b().select(IDATE>=start &&IDATE<=end)
=A1.group(INAME)

=periods(start,end, 1)

=A3.align(B2,IDATE)

>c=0

=B3.new(A3.INAME,B2(#):IDATE, c:OPENING, ?
ENTER,(b=c+ENTER):TOTAL,ISSUE,(c=b-
ISSUE):CLOSE)

=@|BS

A
INAME

1

2 |lteml
3 |lteml
4 |lteml
5 |lteml
6 |lteml
7 |lteml
8 |lteml

9 lteml
10 ltem1

B

IDATE

2014-04-01
2014-04-02
2014-04-03
2014-04-04
2014-04-05
2014-04-06
2014-04-07

2014-04-08
2014-N4-N9

C D
OPENING ENTER
0
19
12
15
10
10
10

14
14

1

O W ww

E
TOTAL

19
22
15
15
10
10
14

14
14

F

ISSUE

G
CLOSE

19
12
15
10
10
10
14

14
14



Optimized storage

When a simple table is generated, it can be stored optimally according to the data characteristics, so as to achieve better computing performance.

Orderly storage: salesagg.btx often performs orderly calculation (such as grouping and aggregating by year and month), so the simple table should be generated in the

order of grouping field.
B

A

=connect@I("db").cursor(“select year(orderdate) as year,month(orderdate) month as
1 month,sellerid,sum(amount)sAmount,count(1) cQuantity from sales group by
year(orderdate),month(orderdate) ,sellerid order by year,month”)

2 =file("salesAgg.btx").export@b(A1)

/SQL sorting
/Orderly storage

Segmented storage: salesagg.btx often performs segmented calculation (such as parallel query), so segmented storage should be performed.
A
=connect@I|("db").cursor(“select year(orderdate) as year,month(orderdate) month as
1 month,sellerid,sum(amount)sAmount,count(1) cQuantity from sales group by
year(orderdate),month(orderdate) ,sellerid”)
2 =file("salesAgg.btx").export@z(A1)
Ordered segmentation: when a field is known to be used for segmentation calculation, it can be sorted and stored in segments according to the field.

A

=connect@I("db").cursor(“select year(orderdate) as year,month(orderdate) month as
1 month,sellerid,sum(amount)sAmount,count(1) cQuantity from sales group by
year(orderdate),month(orderdate) ,sellerid order by sellerid”)
2 =file("salesAgg.btx").export@z(A1;sellerid)

/SQL sorting

/Segmentation

/SQL sorting

/Ordered segmentation



SQL+ statement

If you know the data characteristics of a simple table, you can use SQL + syntax for high-performance optimization queries.

Parallel computing select /*+parallel (4) */ * from sales.txt where orderid=100

Large table cursor query select * from /*+external*/ emp.btx where orderid=100

select 0.0rderid ,0.amount,s.name from sales.btx
o /*+foreign*/ join seller.btx s on s.id = o.sellerid

Ordered foreign table join

Note: Using SQL+statement, the url should be written as jdbc:esproc:local://sqlfirst=plus,

Extended reading: SQL+ http://doc.ragsoft.com/esproc/func/sqljia.html



http://doc.raqsoft.com/esproc/func/sqljia.html

Life cycIe There are three life cycles of cache: timed cache, temporary cache and controllable cache.

Timed cache: generates a cache in advance for multiple business algorithms.

The database table sales has frequent access and many algorithms will use it. Now it is cached as a simple table. The following script file can be
executed in the early morning of each Monday.

A B

=connect@I("db").query@x(“select orderid,client,sellerid,amount,orderdate
from sales order by eid )

2 =file("sales.btx").export@z(A1)

Query data

Create simple table

Business algorithm A: Group and aggregate by client, sellerid.

A B
1 =file("sales.btx”).cursor@b(A1) Open simple table
2 =A2.groups(client,sellerid;sum(amount):sAmount,count(1):cOrderid) Group and aggregate

Business algorithm B: Query records by ordered.

A B
1 =file("salse.btx”) Open simple table
2 =A2.iselect@b(10,orderid; orderid,client,amount) Orderly query



Life cycle

Temporary cache: generates a cache temporarily before calculation, which is generally used repeatedly in the local area by the current algorithm to reduce frequent query

actions of the database.

The front-end application needs to take large table data for page by page display. In this case, it can temporarily generate a simple table, which can greatly
improve the performance by using the | / O and ordered fetching of the simple table. In order to achieve this goal, the front end must pass in the unique
identification of the current algorithm, so that the same simple table can be used each time when fetching data, and the start and end positions of records
(which can be converted to page numbers) must be passed in, so that different pages can be fetched each time.

A B

C
1 =file(uuid) Iﬁ:iitmhglgngbl;: Lzr?]m;the current algorithm as
2 if AT .exists() =conne"ct@l("dbsource").cursor@x("select * from sales order by If the simple table does not exist, generate
orderid")
3 =Al.export@z(B2)
4 =Al.iselect@b(begin:end,orderid; orderid,client,sellerid,orderdate,amount) If the simple table exists, then fetch data by

page

Note: The temporary cache can be stored in the temporary directory specified by esProc, and the files in the directory will be cleaned automatically at regular intervals.



Life cycle

Controllable cache: the business algorithm controls the exact life cycle of the cache, which is used by the current algorithm or other algorithms.

When performing group aggregation calculation on the sales table, first check whether the timeliness of the cache is within one hour. If the timeliness is
met, the cache is directly used for calculation. If the timeliness has passed, the latest cache is temporarily generated. This cache can be used by this

algorithm and other algorithms.

1 =file( "sales” )
if

2 interval@s(A1.date(),now())>=360 =connect@I("dbsource").cursor@x("select * from |f the simple table times out or does not exist,
0 sales order by orderid") generate
|| 'A1.exists()

3 =Al.export@z(B2)

4 =A1.groups(client,sellerid;sum(amount):sAmount) If the simple table exists, group and aggregate



Other items for attention

In the pursuit of higher concurrency, more computation, more data (including data compression), high-performance index query, data

modification and other characteristics, you can use esProc group table format.

Regularly execute the SPL script (including the EPT script of the visualizer) to generate the cache. You can use the scheduling tool of the

operating system, such as scheduled task, crontab, or the third-party visualizer, such as opencron.



CONTENTS

1. Java application integration

2. Report integration

3. Stored procedure outside database mEthOd
4. Diversified data sources

5. Java algorithm outlay

6. Application data cache

7. Multi source hybrid computing method

8. ODBC and HTTP integration




Basic method HE

Multi-source hybrid computing is one of the main uses of computing middleware. With highly encapsulated interfaces, esProc can simplify the hybrid computing

between any data sources.

The employee table is located in Oracle and the performance table is located in MySQL. Please join the two tables across databases and calculate the actual
salary.

Output result

employee(oracle) performance(mysql)

——
empName bonus ey
baseSalary post
post dept
dept

A B
1 =connect(“orcl”).cursor@x("select * from employee”) /Connect employee table
2 =connect(“mysql”).query@x(“select * from performance”) /Connect performance table
3 =AT.switch(emplD,A2:emplD) /Join across databases

4 =A3.new(emplID.empID:empID,empName,baseSalay+emplD.bonus:realSalary,post,dept) /Calculate real salary



Basic method

esProc uses a unified data model to access data sources, and can use the same method to calculate different data sources.

The employee table is located in Oracle, and the performance table is located in the text file. Please join the two tables across sources and calculate
the actual salary.

A B
1 =connect(“orcl”).cursor@x(“select * from employee”) /Employee
2 =file("performance.txt”).import@t() /Performance
3 =A1l.switch(emplD,A2:emplD) /Join across sources
4 =A3.new(emplD.empID:empID,empName,baseSalay+emplD.bonus:realSalary,post) /Calculate actual salary

The employee information is in the simple table, and the performance information is in the text file. Please join the two tables across sources and
calculate the actual salary cost of each department.

A B
1 =file("employee.btx”).cursor@b) /Employee
2 =file("performance.txt”).import@t() /Performance
3 =AT .switch(empID,AZ:empID) /Join across sources
4 =A3.groups(dept; sum(baseSalay+emplD.bonus):realSalary) ot 1 e



€ T+0 mixed calculation I]E

Historical data t is stored in simple tables (group tables if amount is large) and real-time data O is stored in production database. By real-time mixed calculation

of the two, high-performance full amount of data query can be realized and precious production database resources can be saved at the same time.

Historical data 1

Business logic

Mixed calculation across sources[esProc]

Applicati oni

system :

: Fetch historical
; data

File system Historical II Historical II Historical II Historical II
data data data data N

Fetch real time
data

Database

Business real II Business real II Business real II
time table time table time table




T+0 mixed calculation

The order history is stored in the simple table, and the real-time order data is stored in the production database. Please count the number of orders per
customer so far.

A B

1 =connect( “db” ).cursor@x( “select customer,count(1) total from sales where

" /Query database order of the day
orderDate=?" ,now() )

2 =connect().cursor@x( “select customer,count(1) total from sales.btx” ) /Query historical orders

3 =[A1,A2].conjx().groups(customer,sum(total):total) /Group aggregation again

Extended reading: For more comprehensive and detailed information about T + 0 real-time mixed calculation, please refer to
{Statistical Query after Database Split)



http://c.raqsoft.com/article/1569381805397

Cold and hot routing I]E

The frequently accessed hot data can be cached at the near end of the application server, and the occasionally accessed cold data can be stored at the far end.

During the calculation, the cold data or hot data can be returned by judging the parameter interval.

Front end application Java application

Parameter control

Computing middleware

Near end hot data Simple table gmbsdded " @
atabase table

Remote data source o . @ E: E% 9

Database  TXT  hadoop Nosql Json mongoDB Xml

table




Cold and hot routing

The hot data of the current year (2016) is stored in the application server in the form of simple tables, and the cold data of previous years
(before 2016) is stored in the RDB data warehouse. Now, getdate.dfx is used to implement hot and cold routing and group aggregation
algorithm. When the upper Java program calls, the parameters pbegindate and penddate are passed in, that is, the starting and ending time

range of the required data.

A B
1 =hotcoldLine=date("2016-01-01") /Cold and hot dividing point
=file(“saleshot.btx”).iselect@b(max(pBeginDate,hotcoldLine):max(pEndDate,hotcoldL
2 ine), /Fetch hot data

orderdate; orderid,client,sellerid,amount,orderdate)
=connect@I("demo").cursor@x("select * from sales where orderdate>=? and

3 . . . . ) /Fetch cold data
orderdate<?",min(pBeginDate,hotcoldLine),min(pEndDate,hotcoldLine))

4 :A2|A3 /btéognt]ari)rtl)? cold and hot data, one of which may

5 =A4.groups(year(orderdate),month(orderdate);sum(amount):sAmount) /Calculate

Note: Cold data should be indexed according to the OrderDate field, and the group table can be sorted and segmented according to the OrderDate, so as to return quickly

when it is empty. The routing process can be separated into public script for specific script to call to reduce coupling.



CONTENTS

. Java application integration
. Report integration

. Stored procedure outside database and integ ration

. Diversified data sources

. Application data cache

. Multi source hybrid computing method

1
2
3
4
5. Java algorithm outlay
6
7
8

. ODBC and HTTP integration




¢) ODBC integration

[=3

In addition to the JDBC interface, esProc also provides ODBC services to support non Java front-end applications, such as VB, C#, asp.net, crystal reports.

Query interface

External service

Business logic

Data interface

Non java desktop
application

Call statement

ODBC driver

ODBC service

[PL| Script file

JDBC Built-in

functions

S Emm (B

Oracle mySQL

hadoop

Non Java Web
Application

Call statement

SPL

External
library

Z

Web Service

5. Execute the call statement in non java code, call the SPL file through
esProc ODBC, which interprets and executes the SPL file and returns the
calculation result.

3.Deploy esProc ODBC driver

2. Start esProc ODBC service

4. Write specific business algorithm in SPL file, no change.

1. Configure the running environment in ragsoftconfig.xml, no change.




ODBC integration

1. Configure the running environment in ragsoftconfig.xml, and there is no change in this step.

2. Start the esProc ODBC service. This step is the main change.

esProc provides a graphical interface to start ODBC service, please refer to http://doc.ragsoft.com.cn/esproc/tutorial/jsqzqdodbcfw.html

Odbc Server

Odbc Server

Hitp Server

Unit Server

Host IP

Temp file timeout(Hour)

Connections time out{Hour)
Users

Ma, Mame
1 |user(

o x
Start
Odbc Server
127.0.0.1 |+ | Port 8,501 oK
2 Max connections 10 cancel
2 Check interval(Second) 5
=1 ] =
Passwaord Admin

123



ODBC integration

3. Deploy the ODBC driver of esProc. First, execute esprocodbcinst.exe with administrator permission to automatically deploy ODBC driver,

and then configure ODBC connection word in ODBC data source manager of windows.

P
Create Mew Data Source

25|

Select a driver for which you want to set up a data source.

Name
Dql0dbe ODBC Driver

EsprocOdbc ODBC Dy
SQL Server
SQL Server Mative Clie

4 I

< Back

vl

EsprocODBC Data Source Configuration

Connection Parameters

[=3

Data Source Mame: |Espron:Ddbl:

Description: |

TCP/IP Server: | 127.0.0.1

zer: | userd

Password: |®e®

Connect Test

OK

| Port: |B8301

Cancel

; QDBC Data Source Administrator (64-bit)

User DSN  System DSM  File DSN  Drivers  Tracing Connection Pooling  About

User Data Sources:

Name Driver

EsprocOdbc

Excel Files

EsprocOdbc ODBC Driver

Microsoft Excel Driver (*xls, *xlsx, *xls...

MS Access Database Microsoft Access Driver (*.mdb, *.accdb)

Add...

Remove

Caonfigure. ..

An ODBC User data source stores information about how to connect to the indicated data provider. A
Ej; User data source is only visible to you, and can only be used on the curent machine.

Cancel Apply Help

Note: For details of ODBC deploy, please refer to http://doc.ragsoft.com/esproc/tutorial/odbcbushu.html



http://doc.raqsoft.com/esproc/tutorial/odbcbushu.html

ODBC integration

4. Write the specific business algorithm in the SPL file. There is no change in this step.

5. Execute the call statement in the non java code. This step only needs to write the code according to the standard ODBC specification.

For example: in asp.net code, access the conj.dfx script file through ODBC.

_____________________________________________________________________________________________________________________________________________

OdbcConnection odbcConn = new OdbcConnection(“DSN=testOdbc;”);
odbcConn.Open();
OdbcCommand odbcCmd = new OdbcCommand(“call conj(?,?)", odbcConn);

odbcCmd.Parameters.Add("minamount", OdbcType.Int).Value = 4000;
odbcCmd.Parameters.Add("maxamount", OdbcType.Int).Value = 8000;



€ HTTP integration

In order to provide loosely coupled data services (such as data in the middle), esProc provides HTTP services. It should be noted that in this

case, it is usually required to deploy esProc independently.

Desktop application Web application
supporting HTTP supporting HTTP
interface interface

url query statement url query statement

Query interface Java official HTTP client

External service http service

Business logic | Script file |

. Built-in External
DRI e JDBC functions library

S Smm B = -

Oracle mySQL

hadoop Web Service

5. Use any language to access the SPL file through HTTP protocol. The HTTP service of
esProc interprets and executes the SPL file, and returns the calculation result.

3. Deploy the official HTTP client jar package of Java.

2. Start esProc http service.

4. Write specific business algorithm in SPL file and store it in file system.

1. Configure the running environment in ragsoftconfig.xml, no change.




HTTP integration

1. Configure the running environment in ragsoftconfig.xml, and there is no change in this step.

2. Start the HTTP service of esProc. This step is the main change.

esProc provides a graphical interface to start HTTP service, please refer to http://doc.ragsoft.com.cn/esproc/tutorial/httpfuwu.html

HHp Server - o »

Unit Server Odbc Server Http Server Start
r
Http Server
Copy
Clean
- Host IP (127.0.0.1
Config
Options Port 8,503 Parallel limit
Quit \

OK

10—

Cancel



HTTP integration

3. Deploy the official HTTP client jar package of Java. This step has nothing to do with the specific HTTP service. Please refer to the official JAVA standard.
4. Write the specific business algorithm in the SPL file. The algorithm itself does not change in this step. Only the format of the returned data needs to be

processed.

The original algorithm (non HTTP service) queries the sales table. Begindate and enddate are external parameters. The script file is as follows:

A B C
=connect@I(“demo”).query@x("select * from sales where orderdate>=?

' /Query datab
and orderdate<?",beginDate,endDate) uery database

If you want esProc to provide a restful JSON service, just use the JSON function to return the result.

A B C
=connect@I(“"demo”).query@x("select * from sales where orderdate>="
1 " . /Query database
and orderdate<?",beginDate,endDate)
2 =json(Al)
To access the HTTP service of esProc with a browser, you can see the C @ view-source:127.0.0.1:8503/http.dfx(2012-11-01,2012-12-31)
following data structure: 1 [forderid’:1, "clisnt: “UJRIP*, *sellerid’: 17, "amount”: 392.0, " orderdats’: " 2012-11-02 15: 28: 05

“orderid”: 3,
{*arderid”: 8, "client”: "PWQ", “zellerid”: 11, " amourt”: 4410. 0, “orderdate”: ¥ 2012-11-12 15: 28: 06"},
g

client”: "TJRNP”, “sellerid”: 16, "amourt”: 13500, 0, “orderdate™ "2012-11-05 15:28: 0¢
{*arderid client”: "BGU", “zellerid”: 2, "ammmt”: 17800, 0, "orderdate”: “2012-11-06 15:23:05%},
{"orderid”: 9, "client”: "JAYB", “sellerid”: 14, "amowunt”: 17400. 0, “orderdate”: “2012-11-12 15: 2305
{"orderid”: 11, "client™: “STCH", “=sellerid™: 7, "amoumt™: 13700. 0, “orderdate™: “2012-11-10 15: 28:05°
{"orderid”: 13, "client”: "HL", “=zellerid”: 12, "amowt”: 21400, 0, “orderdate”™: "2012-11-21 15: 28 05"]

Note: if you want to return XML format, you should use XML function. If the returned result is not processed, the HTTP client receives a string in 2D table format, separated

by tab by default.



HTTP integration

For Java middleware, it's difficult to return multi-layer JSON, while it's relatively simple to use esProc.

Associate the salesperson with his / her order to form multi-layer JSON and return.

A B
=connect@I("dbsource")
=Al.query@x("select * from sales where orderdate>="?
and orderdate<?",beginDate,endDate)
=A2.run(eid=B2.select(sellerid==eid)) [Join
=json(A3)

=Al.query("select * from employee")

W N P

View return results in browser.

1) [{"eid”: [{"orderid”: 14, "client”: “JAYB", "zellerid”: 1, "amount”: T6d4. 0. “orderdate”: "2012-11-16 15:28:058"}, {Yorderid”: 77, "client”™: “HAMAR", "sellerid”: 1, "ammmt®: 13200.0, “orderdate”: "2013-01-17 15:28:05%1,
{“orderid”: 78, "client™: "¥I", "sellerid”: 1, “amoumt”: 11600.0, “orderdate”: "2013-01-20 15:28:05"}, {"orderid”: 93, "client”: “AVU", “zellerid”: 1, "amownt”: 21800.0, “orderdate”: "2013-02-05 15:28:058°1,
[Yorderid”: 104, “client”: "HL", “sellerid”: 1, " amourt”: 26400. 0, “orderdate”: “2013-02-18 15:28: 05"}, {"orderid”: 109, “client”: “FPWQ", “sellerid”: 1, “amoumt” : 17500. 0, * orderdate”: "2013-02-21 15:28:05%},
[Yorderid”: 120, “client”: “FHYER", “=zellerid”: 1, “ammmt” : 16000. 0, * orderdate”: “2013-03-03 15:28:05"}, {Yorderid”: 127, “cliemt”: "HP", “2ellerid”: 1, “ammmt” : 13600. 0, * orderdate™: “2013-03-15 15: 28:05"},
[Yorderid”: 189, “client”: "INEDL", “=zellerid”: 1, "ammmt” : 26100. 0, * orderdate” : “2013-05-13 15 28:05"}, {Yorderid”: 200, “cliert”: "EGUY, “zellerid”: 1, “ amourt”: 14000, 0, "orderdate”: “2013-05-20 15:28: 05"},
[Yorderid”: 201, “client”: "INEDL", " =zellerid”: 1, "ammmt” : 73600 0, "orderdate”: “2013-05-25 156:28: 058"}, {"orderid”: 221, “client”: "BEGI", "zellerid”: 1, "ammumt” : 7742, 0, "orderdate”: “2013-06-14 15:28: 08"},
{*orderid”: 237, “client”: "PWQ", “2ellerid”: 1, "amoumt” : 23400. 0, " orderdate”: " 2013-06-24 15:28:068"}, {"orderid”: 267, "client”: "QUICK", “zellerid”: 1, " amourt”: 17400, 0, "orderdate”: “2013-07-28 15:28: 068"},
{*orderid”; 278, “client”: "FHYER", "=zellerid”: |, "amoumt”: 23000.0, *orderdate”: "2013-08-12 16:28:05"}, {Yorderid”: 279, "client”: "MIP”, “zellerid”: 1, " amowt”: 5880.0, *orderdate™: " 2013-08-12 15:28:057},
{"orderid”; 288, “client”: "UJENP”, "=zellerid”: |, "amoumt” : 4998, 0, "orderdate”: “2013-08-22 15:28: 058"}, {"order1d”: 361, “client”: "SAVEL", "zellerid”: 1, “amowmt”: 6958, 0, "orderdate”: “"2013-10-19 15:28: 058"},
{“orderid”; 380, “client”: "JAVE", “zellerid”: 1, " amourt”: 13000, 0, "orderdate”: “2013-11-17 15:28: 058"}, {"order1id”: 384, “client” : "A¥WYN", “sellerid”: I, “amowmt”: 22200. 0, "orderdate” : *2012-11-20 15: 28:05"},
{“orderid”: 401, “client”: "DILET". “=zellerid”: 1, “amowmt”: 20200.0, “ orderdate” : “2013-12-08 15: 28:05"}, {"orderid”: 461, “client™: "EGU", “zellerid”: 1, “amount™: 5880, 0, “orderdate™: “2014-02-04 15: 28:05%},
{“orderid”: 465, “client”: "A¥WYN", “zellerid”: 1, “amoumt”:22400.0, “ orderdate”: “2014-02-11 15: 28:05"}, {"orderid”: 468, “client”: "UTRNP®, “zellerid”: . “amowmst™: 15500, 0, “orderdate”: "2014-02-18 15:28: 05"},



€ HTTP integration I]E

5. Access the SPL file through HTTP protocol, which has nothing to do with the specific HTTP service. Note that the esProc HTTP service supports two URL styles.

Default style, http://IP:port /dfx1.dfx(argl,arg2,...). Part of the code of Java calling esProc through HTTP protocol is as follows:

URL url = new URL("http://192.168.1.107:8503/getsales.dfx(2010-03-01,2019-04-01)");
HttpURLConnection httpUrlConn = (HttpURLConnection) url.openConnection();

SAP style, http://IP:port /[sapPath/dfx/argl/arg2/.... The calling code is as follows:

oooooo

URL url = new URL(“http://192.168.1.107:8503/getsales/2010-03-01/2019-04-01)");
HttpURLConnection httpUrlConn = (HttpURLConnection) url.openConnection();

oooooo



THANKS

WWW.ragsoft.com




