Order-related calculation

Sequence number access

- 1. Single sequence number access
- 2. Multiple sequence number access

Basic operations

- 1. Operation between two sequences: sequence comparison
- 2. Operation between two sequences: sum and difference
- 3. Operation between two sequences: union and intersection
- 4. Operation between two sequences: the four fundamental operations
- 5. Operation between two sequences: member comparison
- 6. Operation between sequence and single value

Aggregation

- 1. Aggregation of a single sequence: sum
- 2. Aggregation of a single sequence: maximum, minimum
- 3. Aggregation of a single sequence: average
- 4. Aggregation of a single sequence: count
- 5. Aggregation of a single sequence: logic and operation
- 6. Aggregation of a single sequence: logic or operation
- 7. Aggregation of a single sequence: non repeating count
- 8. Aggregation of a single sequence: median
- 9. Aggregation of a single sequence: ranking
- 10. Aggregation of sequences of sequences: sum sequence
- 11. Aggregation of sequences of sequences: union sequence and difference sequence
- 12. Aggregation of sequences of sequences: intersection sequence
- 13. Aggregation of sequences of sequences: XOR sequence

Loop calculation

- 1. Loop function
- 2. Symbol
- 3. Positioning calculation
- 4. Iteration calculation

Positioning

- Locate a member's position in the sequence 1.
- Take the row number of the record corresponding to the 2. maximum / minimum value
- Get the member sequence number that meets the condition 3.
- Segment sequence number of member in sequence 4.
- Get the original sequence number of a sorted member 5.
- Overall positioning of sequence 6.
- 7. Determine whether it is a sequence member
- Find row number of primary key 8.
- Get the row numbers corresponding to TopN records 9.

- Get the record corresponding to the minimum value 1.
- Get the record corresponding to the maximum value 2.
- Select member that meets the condition 3.
- Return the corresponding member in the sequence 4. according to the section number
- 5. Sort
- Get TopN records 6.
- 7. Find the record where the primary key is located

- 1. Single sequence number access
- 2. Multiple sequence number access

Sequence number access

Find the trading information of the first trading day and the last trading day of the Shanghai stock index in 2019.

Date	Open	Close	Amount
2019/12/31	3036.3858	3050.124	2.27E11
2019/12/30	2998.1689	3040.0239	2.67E11
2019/12/27	3006.8517	3005.0355	2.58E11
2019/12/26	2981.2485	3007.3546	1.96E11
2019/12/25	2980.4276	2981.8805	1.9E11

SPL is as follows, where A() and A.m() are used to get members:

	Α	В
1	=file("000001.csv").import@ct()	/Import data file
2	=A1.select(year(Date)==2019).sort(Date)	/Select records of 2019 and sort by date
3	=A2(1) A2.m(-1)	/Retrieve the information of the first and last trading days of the stock market

A 3	Date	Open	Close	Amount
	2019/01/02	2497.8805	2465.291	9.76E10
	2019/12/31	3036.3858	3050.124	2.27E11

Take the employee table as an example to count the average salaries of state California, Texas, New York, and Florida. Employees in other regions are put into new group for statistics.

ID	NAME	STATE	SALARY
1	Rebecca	California	7000
2	Ashley	New York	11000
3	Rachel	New Mexico	9000
4	Emily	Texas	7000
5	Ashley	Texas	16000

SPL is as follows, in which A.p(-1) is used to obtain the sequence number of the last member:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from EMPLOYEE")	/Query employee table
3	[California,Texas,New York,Florida]	/Create region sequence
4	=A2.align@an(A3,STATE)	/The employee table is grouped in alignment by region, the @a option returns all matching members in a group, and the @n option puts all mismatched members in the new group.
5	=A4.new(if (#>A3.p(- 1),"Other",STATE):STATE,~.avg(SALARY):AvgSalary)	/Calculate the average salary of each group and generate a new sequence table. Use A.p(-1) to get the sequence number of the last member and rename the region of the last group to other.

A5	STATE	SALARY
	California	7700.0
	Texas	7592.59
	New York	7677.77
	Florida	7145.16
	Other	7308.1

There is a table for recording daily attendance information, as shown below:

Per_Code	in_out	Date	Time	Туре
1110263	1	2013-10-11	09:17:14	In
1110263	6	2013-10-11	11:37:00	Break
1110263	5	2013-10-11	11:38:21	Return
1110263	0	2013-10-11	11:43:21	NULL
1110263	6	2013-10-11	13:21:30	Break
1110263	5	2013-10-11	14:25:58	Return
1110263	2	2013-10-11	18:28:55	Out

Every seven pieces of data are a group. We want to convert them into the following result:

Per_Code	Date	In	Out	Break	Return
1110263	2013-10-11	9:17:14	18:28:55	11:37:00	11:38:21
1110263	2013-10-11	9:17:14	18:28:55	13:21:30	14:25:58

First create the target data structure, and then organize every seven records into the required structure to fill in the data. SPL is as follows, in which A() and A.m() multiple sequence number access members are used:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from DailyTime order by Per_Code,Date,Time")	/Query data and sort by Per_code, date and time
3	=A2.group(Per_Code,Date)	/Group by Per_code and date
4	=create(Per_Code,Date,In,Out,Break,Return)	/Create an empty sequence table to store the final result
5	=A3.(~([1,7,2,3,1,7,5,6]))	/For each group, use A([1,7,2,3,1,7,5,6]) to take out the records one by one, which is an orderly all day record.
6	=A5.conj([~.Per_Code,~.Date] ~.(Time).m([1,2,3,4]) [~.Per_Code,~ .Date] ~.(Time).m([5,6,7,8]))	/Organize all the data of each record into a sequence. A.m() is used to access multiple members.
7	>A4.record(A6)	/Add records to the sequence table created by A4.

A4	Per_Code	Date	In	Out	Break	Return
	1110263	2013-10-11	09:17:14	18:28:55	11:37:00	11:38:21
	1110263	2013-10-11	09:17:14	18:28:55	13:21:30	14:25:58

Find the prime number within 100. The SPL is as follows, in which the step() function is used to take members according to the fixed span:

	Α	В
1	=to(100)	/Create 1 to 100 sequence
2	=to(2,10)	/Create 2 to 10 sequence
3	=A2.(A1.step(~,~*2))	/For each member in A2, the n-multiple within 100 is calculated (n > 1)
4	=A1.to(2,)\A3.conj()	Remove 1 and all composite numbers within 100, and get all prime numbers within 100. A3.conj() gets the composite numbers within 100.

A4	Member
	2
	3
	5
	7
	11

Find the increase rate of the closing price of Shanghai stock index in the last 10 trading days of 2019 compared with that of the previous day.

Date	Open	Close	Amount
2019/12/31	3036.3858	3050.124	2.27E11
2019/12/30	2998.1689	3040.0239	2.67E11
2019/12/27	3006.8517	3005.0355	2.58E11
2019/12/26	2981.2485	3007.3546	1.96E11
2019/12/25	2980.4276	2981.8805	1.9E11

SPL is as follows, in which the A.p() function is used to return the sequence number of the last 10 members:

	Α	В
1	=file("000001.csv").import@ct()	/Import data file
2	=A1.select(year(Date)==2019).sort(Date)	/Select records of 2019 and sort by date
3	=A2.p(to(-10,-1))	/Use the p() function to return the sequence number of the last 10 members
4	=A3.new(A2(~).Date:Date, string(A2(~).Close/A2(~- 1).Close-1, "0.000%"):Increase)	/Calculate the increase rate of the closing price of each trading day compared with the previous trading day in loop

A4	Date	Increase
	2019/12/18	-0.178%
	2019/12/19	0.001%
	2019/12/20	-0.402%
	2019/12/23	-1.404%
	2019/12/24	0.673%

The following is a company's organizational structure table. Query all superior organizations of the Beijing market research team.

ID	ORG_NAME	PARENT_ID
1	Head Office	0
2	Beijing Branch Office	1
3	Shanghai Branch Office	1
4	Chengdu Branch Office	1
5	Beijing R&D Center	2

SPL is as follows, in which rvs() function is used to reverse the sequence:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from Organization")	/Query organization table
3	>A2.switch(PARENT_ID,A2:ID)	/The foreign key PARENT_ID is mapped to the record where the ID is located to realize self join
4	=A2.select@1(ORG_NAME=="Beijing Market Research Team")	/Select the record of Beijing Market Research Team
5	=A4.prior(PARENT_ID)	/Use the prior function to find out the superior unit
6	=A5.rvs().(ORG_NAME).concat(" / ")	/Use rvs function to arrange superior units from superior to subordinate

A6

Member

Head Office / Beijing Branch Office / Beijing Marketing Department / Beijing Market Research Team

- 1. Operation between two sequences: sequence comparison
- 2. Operation between two sequences: sum and difference
- Operation between two sequences: union and intersection
- 4. Operation between two sequences: the four fundamental operations
- 5. Operation between two sequences: member comparison
- 6. Operation between sequence and single value

Basic operations

Take the Olympic medal table as an example to find out which Olympic Games China ranked higher than Russia in medal table.

Game	Nation	Medal	
30	USA	46,29,29	
30	China	38,27,23	
30	UK	29,17,19	
30	Russia	24,26,32	
30	Korea	13,8,7	

	Α	В
1	=file("Olympic.csv").import@cqt()	/Import the ranking of Olympic Games
2	=A1.run(Medal=Medal.split@c())	/Medal field is split into sequence by commas
3	=A2.group(Game)	/Group by game
4	=A3.select(~.select(Nation=="China").Medal>~.selec t(Nation=="Russia").Medal)	/Using the ">" symbol to compare the medal sequence of China and Russia, the number of gold medals, silver medals and bronze medals will be compared in sequence, and the game number will be selected during which China ranked higher.
5	=A4.(Game)	/List the games

Similarly, we can use "<" and "==" to compare sequence.

Find out the out of stock branches, that is, the existing DVD copies less than 4 categories. The branch table stores the information of DVD branches; the DVD table stores the title and category information of DVD; the DVDCopy table stores multiple copies of DVD, and the DVD copy is the real disc, which is stored in each branch in the physical form.

SPL is as follows, in which the sum of "|" and the difference of "\" are used:

	Α	В
1	=connect("db")	/Connect to database
2	=Branch=A1.query("select * from Branch")	/Read branch information and define it as branch variable
3	=DVD=A1.query("select * from DVD")	/Read DVD information and define it as DVD variable
4	=DVDCopy=A1.query("select * from DVDCopy")	/Read DVDCopy information and define it as DVDCopy variable
5	=DVDCopy.switch(DVDID,DVD:DVDID; BID,Branch:BID)	/Switch the DVDID field of DVDCopy to the corresponding record in DVD
6	=DVDCopy.select(STATUS!="Miss" && LASTDATERETURNED!=null)	/Filtering lost and unreturned DVD copies
7	=A6.group(BID)	/Group filtered data by BID
8	=A7.select(~.icount(DVDID.CATEGORY)<4)	/Select stores with DVD copy less than 4 categories
9	$=A8.(BID) (Branch \setminus A7.(BID))$	/Out of stock branches. A8.(BID) refers to the branches with DVD copy less than 4 categories, $Branch \land A7.(BID)$ refers to the branch without DVDCopy.

A9	BID	STREET	CITY
	B002	Street2	Houston
	B003	Street3	LA
	B004	Street4	Lincoln

3. Operation between two sequences: union and intersection

The municipalities directly under the central government of China are Beijing, Tianjin, Shanghai and Chongqing, and the first tier cities are Shanghai, Beijing, Shenzhen and Guangzhou. What are the municipalities directly under the central government and the first tier cities? Which cities are both directly under the central government and first tier cities?

	Α	В
1	[Beijing,Tianjin,Shanghai,Chongqing]	/Municipality directly under the Central Government
2	[Shanghai,Beijing,Shenzhen,Guangzhou]	/First-tier cities
3	=A1&A2	/the union of municipalities directly under the central government and first tier cities
4	=A1^A2	/intersection, i.e. the first tier city in the municipalities directly under the central government

A4	Member	A3	Member
	Beijing		Beijing
	Shanghai		Tianjin
			Shanghai
			Chongqing
			Shenzhen
			Guangzhou

Calculate the daily relative yield of Shenzhen 300 (399007) to Shenzhen Composite Index (399001) from December 24 to 26, 2019.

Date	Code	Name	Open	Close	Amount
2020/2/18	399001	Shenzhen	11244.7651	11306.4863	3.19E+11
2020/2/17	399001	Shenzhen	10974.9328	11241.4993	3.12E+11
2020/2/14	399001	Shenzhen	10854.4551	10916.3117	2.77E+11
2020/2/13	399001	Shenzhen	10936.5011	10864.3222	2.87E+11
2020/2/12	399001	Shenzhen	10735.0475	10940.7952	2.66E+11

A ?? B is used to perform the "?" operation on the bitwise members of two sequences, where $? \in \{+, -, *, /, \%, \}$. SPL is as follows:

	Α	В
1	=connect("db")	/Connect to database
2	=["399007","399001"].(A1.query("select * from StockIndex where code=? and date between '2019-12-23' and '2019-12-26'",~))	/Read the data of Shenzhen 300 and Shenzhen composite index from December 23 to 26, 2019, and take the 23rd to calculate the increase
4	=A2.(~.calc(to(2,4),Close/Close[-1]))	/Calculate the daily increase from the 24th to the 26th
5	=A3(1)A3(2)	/The two sequence subtract by bit, i.e. relative yield

A5	Member
	0.0031349096521252617
	0.0011897141619391371
	-4.4910504685946595E-4

The following is the file generated after random sampling. Compare whether the same IDs are selected for the two random sampling. Part of the data in the file is as follows:

ID	Predicted_Y	Original_Y
10	0.012388464367608093	0.0
11	0.01519899123978988	0.0
13	0.0007920238885061248	0.0
19	0.0012656367468159102	0.0
21	0.009460545997473379	0.0
23	0.024176791871681664	0.0

SPL is as follows, in which cmp() function is used to compare the members of two sequences bit by bit:

	Α	В
1	=file("p_old.csv").import@ct()	/Read the first output file
2	=file("p_new.csv").import@ct()	/Read the second output file
3	=cmp(A1.(ID),A2.(ID))	/Compare whether the IDs generated twice are identical (the member values are equal and the order is the same)

A result of 0 indicates that the IDs in the two files are exactly the same.

If the order of IDs may be different, you can use the eq() function to compare whether the members of the two sequences are the same:

	Α	В
3	=A1.(ID).eq(A2.(ID))	/Compare the ID values generated twice to see if they are the same. The order is not required to be the same.

In the same example, the order of IDs of two files is the same. Compare how many pieces of data are exactly the same.

ID	Predicted_Y	Original_Y
10	0.012388464367608093	0.0
11	0.01519899123978988	0.0
13	0.0007920238885061248	0.0
19	0.0012656367468159102	0.0
21	0.009460545997473379	0.0
23	0.024176791871681664	0.0

SPL is as follows, where "|" is used to combine sequence and single value:

	Α	В	C
1	=file("p_old.csv").import@ct()		/Read the first output file
2	=file("p_new.csv").import@ct()		/Read the second output file
3	for A1.len()	=cmp(A1(A3),A2(A3))	/Compare each record of two files in loop
4		=@ B3	/Combine the results of each comparison with the B4 value
5	=B4.count(~==0)		/Count how many comparisons are equal

B4	Member	A5	Member
	0		11302
	0		
	0		

- 1. Aggregation of a single sequence: sum
- 2. Aggregation of a single sequence: maximum, minimum
- 3. Aggregation of a single sequence: average
- 4. Aggregation of a single sequence: count
- 5. Aggregation of a single sequence: logic and operation
- 6. Aggregation of a single sequence: logic or operation
- Aggregation of a single sequence: non repeating count
- 8. Aggregation of a single sequence: median
- 9. Aggregation of a single sequence: ranking
- 10. Aggregation of sequences of sequences: sum sequence
- 11. Aggregation of sequences of sequences: union sequence and difference sequence
- 12. Aggregation of sequences of sequences: intersection sequence
- 13. Aggregation of sequences of sequences: XOR sequence

Aggregation

The following is the urban GDP table. Calculate the per capita GDP of municipalities directly under the central government, first tier cities and second tier cities respectively.

ID	City	GDP	Population
1	Shanghai	32679	2418
2	Beijing	30320	2171
3	Shenzhen	24691	1253
4	Guangzhou	23000	1450
5	Chongqing	20363	3372

SPL is as follows, in which sum() function is used for summing.

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from GDP")	/Query city GDP table
3	[["Beijing","Shanghai","Tianjing","Chongqing"].pos(?)>0,["Beijing","Shang hai","Guangzhou","Shenzhen"].pos(?)>0,["Chengdu","Hangzhou","Chong qing","Wuhan","Xian","Suzhou","Tianjing","Nanjing","Changsha","Zhengz hou","Dongguan","Qingdao","Shenyang","Ningbo","Kunming"].pos(?)>0]	/Enumerate municipalities directly under the central government, first tier cities and second tier cities
4	=A2.enum@r(A3,City)	/Enumeration grouping by city
5	=A4.new(A3(#):Area,~.sum(GDP)/~.sum(Population)*10000:CapitaGDP)	/Per capita GDP of each group

A5	Area	CapitaGDP
	["Beijing","Shanghai","Tianjing","Chongqing"].pos(?)>0	107345.03
	["Beijing","Shanghai","Guangzhou","Shenzhen"].pos(?)>0	151796.49
	["Chengdu","Hangzhou","Chongqing","Wuhan","Xian","Suzhou","Tianjing","Nanji ng","Changsha","Zhengzhou","Dongguan","Qingdao","Shenyang","Ningbo","Ku nming"].pos(?)>0	106040.57

Take the order table as an example to merge the orders with repeated time periods of customer anatr.

OrderID	Customer	SellerId	OrderDate	FinishDate
10308	ANATR	7	2012/09/18	2012/10/16
10309	ANATR	3	2012/09/19	2012/10/17
10625	ANATR	3	2013/08/08	2013/09/05
10702	ANATR	1	2013/10/13	2013/11/24
10759	ANATR	3	2013/11/28	2013/12/26

SPL is as follows, where max() function is used to take the maximum value and min() function to take the minimum value:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from Orders where Customer='ANATR' order by OrderDate")	/Select the order information of customer anatr and sort by order date
3	=A2.group@i(OrderDate>max(FinishDate[,-1]))	/Group orders with an order date less than the previous finish date
4	=A3.new(Customer,~.min(OrderDate):OrderDate,~.m ax(FinishDate):FinishDate)	/Take the earliest order date of each group as the order date and the latest finish date as the finish date

A3	
	Member
[[10308	ANATR,7,], [10309,ANATR,3,]]
[[10625	ANATR,3,]]
[[10702,	ANATR,1,]]
[[10759	ANATR,3,], [11079,ANATR,7,]]

A4		
Customer	OrderDate	FinishDate
ANATR	2012/09/18	2012/10/17
ANATR	2013/08/08	2013/09/05
ANATR	2013/10/13	2013/11/24
ANATR	2013/11/28	2013/12/29

✦ 3. Aggregation of a single sequence: average

Some data in the employee table are as follows:

ID	NAME	DEPT	STATE	SALARY
1	Rebecca	R&D	California	7000
2	Ashley	Finance	New York	11000
3	Rachel	Sales	New Mexico	9000
4	Emily	HR	Texas	7000

Calculate the average salary of each department in different regions, and want to convert it into the following result:

DEPT	California	Florida	New York	Texas	
Finance	8000	10000	7500	8166.67	
HR	10000	7000	5000	6500	

SPL is as follows, in which avg() function is used to calculate the average value:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from EMPLOYEE")	/Query employee table
3	=A2.groups(DEPT,STATE;avg(SALARY):AvgSalary)	/Group aggregation, use avg function to calculate the average salary of each department in each region
4	=A3.pivot(DEPT;STATE, AvgSalary)	/Transpose according to target table

A4					
DEPT	California	Florida	New York	Texas	
Finance	8000	10000	7500	8166.67	
HR	10000	7000	5000	6500	

Take the score sheet as an example to find the number of students who failed in each subject in class one.

CLASS	STUDENTID	SUBJECT	SCORE
Class one	1	English	84
Class one	1	Math	77
Class one	1	PE	69
Class one	2	English	81
Class one	2	Math	80

SPL is as follows, in which count() function is used to count:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from Scores where CLASS='Class one'")	/Query the scores of Class One students
3	=A2.groups(SUBJECT; count(SCORE<60):FailCount)	/Group aggregation, in which the count function is used to count the number of failures whose score is less than 60

A 3	SUBJECT	FailCount
	English	2
	Math	0
	PE	2

A primary school investigates terminals that students can use for online teaching to see if all students can use mobile phones. The questionnaire of each class and summary directory are as follows:

ID	STUDENT_NAME	TERMINAL
1	Rebecca Moore	Phone
2	Ashley Wilson	Phone,PC,Pad
3	Rachel Johnson	Phone,PC,Pad
4	Emily Smith	Phone,Pad
5	Ashley Smith	Phone,PC
6	Matthew Johnson	Phone
7	Alexis Smith	Phone,PC
8	Megan Wilson	Phone,PC,Pad

The A.ifn() function is used to get the first non null member, and the A.cand() function is used to perform and operation on the member. SPL is as follows:

	Α	В	
1	=directory@ps("	D:/Primary School")	/Recursively traversing directories, listing all files
2	for A1	=file(A2).xlsimport@t()	/Import each class questionnaire excel file in loop
3		=B2.([TERMINAL,"Phone"].ifn().split@ c().pos("Phone") > 0)	/When the terminal in the questionnaire is not filled in, it is not considered that the mobile terminal is not supported. Use ifn() function to ensure this is true.
4	=B3.cand()		/Use the cand() function to calculate whether the members of B3 are all true

A1

. . .

Member

D:\Primary School\Grade1\Class1\Questionnaire.xlsx D:\Primary School\Grade1\Class2\Questionnaire.xlsx D:\Primary School\Grade1\Class3\Questionnaire.xlsx

Part of the data in the sales table is as follows. Query whether the customer rattc has ranked among the top three monthly sales in 2014.

OrderID	Customer	SellerId	OrderDate	Amount
10400	EASTC	1	2014/01/01	3063.0
10401	HANAR	1	2014/01/01	3868.6
10402	ERNSH	8	2014/01/02	2713.5
10403	ERNSH	4	2014/01/03	1005.9
10404	MAGAA	2	2014/01/03	1675.0

SPL is as follows, in which A.cor() function is used to perform or operate on members:

	Α	В
1	<pre>=connect("db").query("select * from sales")</pre>	/Connect to database and read the sales table
2	=A1.select(year(OrderDate)==2014)	/Select 2014 data
3	=A2.group(month(OrderDate))	/Use the group function to group 2014 data by month
4	=A3.(~.groups(Customer; sum(Amount):Amount))	/Group and aggregate sales amount by customer for each group
5	=A4.new(Customer, ~.top(-3;sum(Amount)):Top3)	/Cycle monthly data to calculate the top 3 customers of monthly sales
6	=A5.(Top3.(Customer).pos("RATTC")>0)	/Judge whether the top three of each month include customer rattc
7	=A6.cor()	/Use the cor() function to calculate whether the member of A6 exists true

A6	Member	A7		Member
	false		true	
	false			
	true			

Analyze which field in the data file is the serial number. Some data are as follows:

Passengerld	Survived	Pclass	Name	Sex	Age
1	0	3	"Braund, Mr. Owen Harris"	male	22
2	1	1	"Cumings, Mrs. John Bradley"	female	38
3	1	3	"Heikkinen, Miss. Laina"	female	26
4	1	1	"Futrelle, Mrs. Jacques Heath"	female	35
5	0	3	"Allen, Mr. William Henry"	male	35
6	0	3	"Moran, Mr. James"	male	
7	0	1	"McCarthy, Mr. Timothy J"	male	54

SPL is as follows, in which the icount() function is used for non repeated counting:

	Α	В	С	D
1	=file("titanic_train.csv").import@cqt()			/Read data file
2	2 =A1.fno().new(A1.fname(~):Name,A1.field(~).icount():DCount)			/Use the icount() function to count the number of non repeating members for each field
3	=A2.select(DCount==A1.len())			/Select the fields with the same length of non repeated count and all data
4	if (A3.len() > 1)	=A3.select(like@c(Name,"*id*"))		/If there are more than one field satisfying the condition, select the one whose field name contains id.
5		if (B4.len() > 0)	>A3=B4	/If the field name contains id, assign the selected field to A3
6	=A3.minp(len(Name)).Name			/Select the field name with the shortest name from the selected fields

Part of the data in the employee table is as follows. Calculate the median salary of each department.

ID	NAME	DEPT	SALARY
1	Rebecca	R&D	7000
2	Ashley	Finance	11000
3	Rachel	Sales	9000
4	Emily	HR	7000
5	Ashley	R&D	16000

✦ 8. Aggregation of a single sequence: median

SPL is as follows, in which the median() function is used:

	Α	В
1	<pre>=connect("db").query("select * from employee")</pre>	/Connect to database, read employee table
2	=A1.groups(DEPT;median(;SALARY))	/Group and aggregate by department to calculate the median salary of each department

A3	DEPT	MedianSalary
	Administration	9500.0
	Finance	7000.0
	HR	7000
	Marketing	7000
	Production	6500

Take the score table as an example to find the ranking of the total score of the student whose student id is 8 in class one.

CLASS	STUDENTID	SUBJECT	SCORE
Class one	1	English	84
Class one	1	Math	77
Class one	1	PE	69
Class one	2	English	81
Class one	2	Math	80

SPL is as follows, in which the A.rank() function is used to calculate the ranking:

	Α	В
1	<pre>=connect("db").query("select * from SCORES where CLASS='Class one'")</pre>	/Connect the data source and read the scores of the class one
2	=A1.groups(STUDENTID;sum(SCORE):TotalScore)	/Group and aggregate the total score of each student
3	=A2.select(STUDENTID==8).TotalScore	/Select the total score of the student whose id is 8
4	=A2.rank@z(A3:TotalScore)	/Use the A.rank() function to calculate the ranking, and use the @z option to rank the total score from large to small

The prediction results of test data after intelligent modeling are as follows. Calculate the AUC index of the model:

ID	Predicted_Y	Original_Y
10	0.012388464367608093	0.0
11	0.01519899123978988	0.0
13	0.0007920238885061248	0.0
19	0.0012656367468159102	0.0
21	0.009460545997473379	0.0

SPL is as follows, in which the ranks() function is used to calculate the ranking:

	Α	В
1	=file("p.csv").import@ct()	/read file
2	=P=A1.pselect@a(Original_Y==1),M=P.len()	/Select all the records whose real target is 1. Set the row number to P, and the quantity to M
3	=N=A1.len()-M	/For the records whose real target is not 1, set the quantity to N
4	=A1.(Predicted_Y).ranks@s()	/Use the ranks() function to calculate the rank of the prediction value. The @s option is used here. When the values are equal, the average value of the ranking will be used
5	=(A4(P).sum()-M*(1+M)/2)/(M*N)	/Calculate AUC value according to formula

✤ 10. Aggregation of sequences of sequences: sum sequence

The order table and order detail table are the main sub table relationships. Each order has multiple details. As shown in the following figure:

The detail data of each order in the order detail table is variable in length. To find out the following table:

ID	Customer	Date	Product1	Amount1	Product2	Amount2	Product3	Amount3
1	3	20190101	Apple	5	Milk	3	Salt	1
2	5	20190102	Beef	2	Pork	4		
3	2	20190102	Pizza	3				

SPL is as follows, in which the A.conj() function is used to merge sequence members:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from OrderDetail left join Order on Order.ID=OrderDetail.OrderID")	/Import order detail table and order table, and join by order ID
3	=A2.group(ID)	/Group by order ID
4	=A3.max(~.count()).("Product"+string(~)+","+"Amount "+string(~)).concat@c()	/Find the group with the most members to determine the target table data structure
5	=create(ID,Customer,Date,\${A4})	/Create sequence table according to data structure determined by A4
6	>A3.run(A5.record([ID,Customer,Date] ~.([Product,Amount]). conj()))	/Loop the grouped data, and put members into a sequence in each group. Here, the conj function is used to get the sum sequence of each group's products and quantities. Finally, the generated records are inserted into the sequence table created by A5.

Here is the JSON data of the number of confirmed cases of new coronavirus around the world at a certain time. Calculate the number of confirmed cases in the world.

```
{Region:"China",Confirmed:[
          {Region:"Hubei",Confirmed:[
                     {Region:"Wuhan",Confirmed:51986},
                     {Region:"Xiaogan",Confirmed:3009},
                     {Region:"Huanggang",Confirmed:3791},
                     ...]
          },
          {Region:"Taiwan",Confirmed:18},
          ...]
S
{Region:"Thailand",Confirmed:33},
...]
```

SPL is as follows, in which A.conj@r() function is used to recursively merge sequence members:

	Α	В
1	=json(file("COVID-19.json").read())	/Import JSON data file
2	=A1.field@r("Confirmed")	/Use the @r option of the A.field() function to recursively get all the confirmed fields
3	=A2.conj@r()	/Use the @r option of the A.conj() function to merge recursively
4	=A3.sum()	/Sum

A2	A3	
Member	Mer	nber
[[51986,3009,3791],[58,]		51986
251		3009
33		3791
28		1447
19		1206
16		1125

There are course table and course selection table. Query which courses are not selected by students. The course selection table can be multiple choices, separated by commas. Some data are as follows:

Course			
ID	NAME	TEACHERID	
1	Environmental protection and	5	
2	Mental health of College Students	1	
3	Computer language Matlab	8	
4	Electromechanical basic practice	7	
5	Introduction to modern life science	3	
6	Modern wireless communication system	14	

SelectCourse			
ID	STUDENTID	COURSE	
1	59	2,7	
2	43	1,8	
3	52	2,7,10	
4	44	1,10	
5	37	5,6	
6	57	3	

The A.union() function is used to find the union of sequence members, and the A.diff() function is used to find the difference of sequence members. The SPL is as follows:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from Course")	/Read course table
3	=A1.query("select * from SelectCourse")	/Read SelectCourse table
4	=A3.union(COURSE.split@cp())	/After the courses in the SelectCourse table are split by commas, union the course sequence using the union() function
5	=A2.(ID)	/IDs of all courses
6	=A2(A5.pos([A5,A4].diff()))	/Use the diff() function to find the difference sequence between the IDs of the course table and the SelectCourse table, that is, the course that no students selected. After positioning in A5, select from A2.

ID	NAME	TEACHERID
1	Fundamentals of economic management	21

A C

Part of the data in the sales table is as follows. Calculate the names of customers whose monthly sales amounts are in the top 20 for every month in 2014.

OrderID	Customer	SellerId	OrderDate	Amount
10400	EASTC	1	2014/01/01	3063.0
10401	HANAR	1	2014/01/01	3868.6
10402	ERNSH	8	2014/01/02	2713.5
10403	ERNSH	4	2014/01/03	1005.9
10404	MAGAA	2	2014/01/03	1675.0

SPL is as follows, in which isect() function is used to find member intersection:

	Α	В
1	<pre>=connect("db").query("select * from sales")</pre>	/Connect the data source and read the sales table
2	=A1.select(year(OrderDate)==2014)	/Select 2014 data
3	=A2.group(month(OrderDate))	/Use the group function to group 2014 data by month
4	=A3.(~.group(Customer))	/Grouped members are grouped by customer
5	=A4.(~.top(-20;sum(Amount)))	/Loop monthly data to calculate the top 20 customers of monthly sales
6	=A5.(~.(Customer))	/List the top 20 customers
7	=A6.isect()	/Use isect() function to find the intersection between each group

The score sheet is saved in different files according to the semester. Query the ID of the students who have only entered the top ten of the total score once in the first and second semester.

CLASS	STUDENTID	SUBJECT	SCORE
Class one	1	English	84
Class one	1	Math	77
Class one	1	PE	69
Class one	2	English	81
Class one	2	Math	80

SPL is as follows, in which the A.xunion() function is used to select the records that are not repeated among the sequence members:

	Α	В
1	=file("Scores1.csv").import@ct()	/Import scores of first semester
2	=file("Scores2.csv").import@ct()	/Import scores of second semester
3	=A1.groups(STUDENTID;sum(SCORE):Score)	/Group and summarize student' s total score of first semester
4	=A2.groups(STUDENTID;sum(SCORE):Score)	/Group and summarize student' s total score of second semester
5	=A3.top(-10;Score).(STUDENTID)	/Select the top ten student ID of first semester's total score
6	=A4.top(-10;Score).(STUDENTID)	/Select the top ten student ID of second semester's total score
7	=[A5,A6].xunion()	/Using the xunion function, select the records that the student ID of the first and second semester does not repeat.

A5	Member	A6	Member	A7	Member
	2		12		2
	9		1		9
	4		8		10
	10		4		7

CONTENTS

- 1. Loop function
- 2. Symbol
- 3. Positioning calculation
- 4. Iteration calculation

Loop calculation

Below is the JSON format sales data grouped by month and year. Calculate the total sales in 2016.

```
{YEAR:2016,MONTH:1,SALES:[
          {ORDERNUMBER:10101, ORDERLINENUMBER:4, SALES:3782, ...},
          {ORDERNUMBER:10102, ORDERLINENUMBER:1, SALES:3773.38, ...},
         ...]
۶ı
{YEAR:2016,MONTH:2,SALES:[
         {ORDERNUMBER:10105, ORDERLINENUMBER:2, SALES:7208 ...},
         {ORDERNUMBER:10106, ORDERLINENUMBER:15, SALES:8690.36, ...},
         ...]
٦ì
...
```

✤ 1. Loop function

SPL is as follows, in which A.() is used for loop calculation:

	Α	В
1	=json(file("sales.json").read())	/Import JSON data file
2	=A1.select(YEAR=2016)	/Select sales data of 2016
3	=A2.field@r("SALES")	/Recursively get sales field value
4	=A3.(~.sum()).sum()	/Use A.() to calculate the total sales of each group in loop, and then calculate the total sales

A 3		
Me	ember	Member
[3782,3773.3	8,1404,]	3782
[7208,8690.3	6,4566.05,]	3773.38
[5265.15,613	0.35,3485.82]	1404
[2793.86,926	4.86,2082.49,]	

A4	
Member	
1252700	.43

Part of the data in the sales table is as follows. Another 5% performance award will be given to the top 10% salesmen in 2014.

OrderID	Customer	SellerId	OrderDate	Amount
10400	EASTC	1	2014/01/01	3063.0
10401	HANAR	1	2014/01/01	3868.6
10402	ERNSH	8	2014/01/02	2713.5
10403	ERNSH	4	2014/01/03	1005.9
10404	MAGAA	2	2014/01/03	1675.0

SPL is as follows, in which the A.run() function is used to loop the sequence members:

	Α	В
1	<pre>=connect("db").query("select * from sales")</pre>	/Connect the data source and read the sales table
2	=A1.select(year(OrderDate)==2014)	/Select 2014 data
3	=A2.groups(SellerId;sum(Amount):Amount)	/Use the groups function to summarize the total sales of the current year in groups by salesperson
4	=A3.sort@z(Amount).to(A3.len()*0.1)	/In descending order of the sales amount, take the top 10%
5	=A4.run(Amount*=1.05)	/Calculate sales amount of the top 10% in loop, give 5% reward and assign value

A5	SellerId	Amount
	4	150433.185
	3	127878.04
	1	102756.759
	8	87965.346

Some data of the payment table is as follows:

ID	customID	name	amount_payable	due_date	amount_paid	pay_date
112101	C013	CA	12800	2014-02-21	12800	2014-12-19
112102	C013	CA	3500	2014-06-15	3500	2014-12-15
112103	C013	CA	2600	2015-03-21	6900	2015-10-17

It is required to output the monthly payable amount according to the specified year (such as 2014). If there is no data of the current month, the payable amount of the current month is the value of the previous month:

name	1	2	3	4	5	6	7	8	9	10	11	12
CA		12800	12800	12800	12800	3500	3500	3500	3500	3500	3500	3500

SPL is as follows. In the loop, the current member is calculated in loop:

	Α	В
1	<pre>\$select * from Payment.txt where year(due_date)=2014</pre>	/Import data of payment table in 2014
2	=create(name,\${12.string()})	/Create sequence table by target structure
3	=A1.group(customID).((m12=12.(null),~.(m12(month(due_d ate))=amount_payable), m12.(~=ifn(~,~[- 1])),A2.record(name m12)))	/Group by customer ID, loop each group of data, and then loop the members, calculate the payable amount of each month, and add it to the sequence table created by A2 together with the customer name

A3												
name	1	2	3	4	5	6	7	8	9	10	11	12
CA		12800	12800	12800	12800	3500	3500	3500	3500	3500	3500	3500
NK			5800	5800	5800	9600	9600	9600	9600	3100	3100	3100

Find the maximum number of consecutive days for the closing price of Shanghai stock index to increase in 2019.

Date	Open	Close	Amount
2019/12/31	3036.3858	3050.124	2.27E11
2019/12/30	2998.1689	3040.0239	2.67E11
2019/12/27	3006.8517	3005.0355	2.58E11
2019/12/26	2981.2485	3007.3546	1.96E11
2019/12/25	2980.4276	2981.8805	1.9E11

SPL is as follows, where ~ is used to represent the current member in the loop:

	Α	В
1	=file("000001.csv").import@ct()	/Import data file
2	=A1.select(year(Date)==2019).sort(Date)	/Select records of 2019 and sort by date
3	=last=0,count=0,A2.(Close).((if(~>last,count +=1,count=0),last=~,count)).max()	/Loop the closing price, compare the closing price of each day with the closing price of the previous day. If the closing price of the current day is higher, add 1 to the count, and finally select the maximum count value.

One cock is worth five, one hen is worth three, and three chicks are worth one. If you bought a total of 100 of mixed cocks, hens and chicks for 100 yuan, how many are the cocks, hens and chicks respectively? SPL is as follows, where ~ is used to represent the current member in the loop:

	Α	В
1	=to(100/5)	/Quantity of cocks that may be purchased
2	=to(100/3)	/Quantity of hens that may be purchased
3	=33.(~*3)	/Quantity of chicks that may be purchased
4	=create(Cock,Hen,Chick)	/Create a sequence table to store the number of cock, hen and chick
5	>A1.run(A2.run(A3.run(if(A1.~+A2.~+A3.~==100 && A1.~*5+A2.~*3+A3.~/3==100,A4.insert(0,A1.~,A2.~,A3.~)))))	/Loop cock, hen, chick respectively, when the condition is met, insert the result to the sequence table created in A4. The ~ symbol is used to represent the current member of the sequence loop

A5	Cock	Hen	Chick
	4	18	78
	8	11	81
	12	4	84

Here are two texts. Find the string of file 1 in file 2. We want to return it in the following form:

file1	file2	输出
like parks	I like to go out because I like parks.	Q1. like parks
went out	Ben does not go out much.	I
go out	Shelly went out often but does not like parks.	Shelly
	Harry does not go out neither does he like parks.	Harry
		Q2. went out
		Shelly
		Q3. go out
		I
		Ben
		Harry

SPL is as follows. In the loop, the # symbol is used to represent the current sequence number:

	Α	В
1	=file("file1.txt").read@n()	/Read file1
2	=file("file2.txt").read@n()	/Read file2
3	=A1.conj(("Q"+string(#)+". "+~) A2.select(pos(~,A1.~)).(~.words()(1)))	/Loop through the string in file 1, find it in file 2, and take the first word. In A2.select, ~ represents the current member of A2, and A1.~ represents the current member of A1. Before each group of searching result, spell Q+A1 sequence number+A1 current member, where A1 sequence number is got from #.

A3	Member
	Q1. like parks
	1
	Shelly
	Harry
	Q2. went out
	Shelly
	Q3. go out
	1
	Ben
	Harry

List the 20 day closing average price of China Merchants Bank (600036) from January 1 to 10, 2020.

Date	Open	Close	Amount
2019/12/31	3036.3858	3050.124	2.27E11
2019/12/30	2998.1689	3040.0239	2.67E11
2019/12/27	3006.8517	3005.0355	2.58E11
2019/12/26	2981.2485	3007.3546	1.96E11
2019/12/25	2980.4276	2981.8805	1.9E11

SPL is as follows, where the A.calc() function is used to calculate and return at the specified position, and the [a:b] is used to access members in loop:

	Α	В
1	=connect("db")	/Connect data source
2	=A1.query("select Date, Close from Stock where Code='600036' order by Date")	/Select data of China Merchants Bank and sort by date
3	=A2.pselect@a(Date>=date("2020/01/01") && Date<=date("2020/01/10"))	/Use the pselect() function to get the row number of the record from January 1 to 10, 2020
4	=A2(A3).derive(A2.calc(A3(#),avg(Close[- 19:0])):ma20)	/The calc() function is used to calculate in loop the 20-day average of the data of the first ten days and return it. The close[- 19:0] is used to represent the closing price from today to the past 19 days.

A3	Member	A4	Date	Close	ma20
	4311		2020/01/02	38.88	37.35
	4312		2020/01/03	39.4	37.50
	4313		2020/01/06	39.24	37.64
	4314		2020/01/07	39.15	37.79
	4315		2020/01/08	38.41	37.90
	4316		2020/01/09	38.9	38.03
	4317		2020/01/10	39.04	38.16

Part of the data in the sales table is as follows. How many days does it take to reach 20 orders per month in 2014?

OrderID	Customer	SellerId	OrderDate	Amount
10400	EASTC	1	2014/01/01	3063.0
10401	HANAR	1	2014/01/01	3868.6
10402	ERNSH	8	2014/01/02	2713.5
10403	ERNSH	4	2014/01/03	1005.9
10404	MAGAA	2	2014/01/03	1675.0

SPL is as follows, in which seq() function is used to generate sequence number:

	Α	В
1	=connect("db").query("select * from sales")	/Connect the data source and read the sales table
2	=A1.select(year(OrderDate)==2014)	/Select 2014 data
3	=A2.sort(OrderDate)	/Sort by order date
4	=A3.select(seq(month(OrderDate))==20)	/Use the seq() function to generate the order sequence number of each month and select the record with the sequence number of 20 for each month
5	=A4.new(month(OrderDate):Month,day(OrderDate):Day)	/List the number of days needed to reach 20 sales per month

A5	Month	Day
	1	20
	2	20
	3	20
	4	18

Query the ranking of employee income by department. Some data in the employee table is as follows:

ID	NAME	DEPT	SALARY
1	Rebecca	R&D	7000
2	Ashley	Finance	11000
3	Rachel	Sales	9000
4	Emily	HR	7000
5	Ashley	R&D	16000

SPL is as follows, in which rank() function is used to uniformly number members with the same field value:

	Α	В
1	=connect("db") .query("select * from Employee order by DEPT, SALARY DESC")	/Connect data source, read employee table and sort by department and salary
2	=A1.derive(rank(SALARY;DEPT):DeptRank)	/Use rank() function to number members for ordered department and salary data, calculate the ranking of each department

A2	ID	NAME	DEPT	SALARY	DeptRank
	2	Ashley	Finance	11000	1
	32	Andrew	Finance	11000	1
	230	Hannah	Finance	10000	3
	24	Chloe	Finance	10000	3

Take the score table as an example to find the ranking of student with ID 8 in each subject in class one.

CLASS	STUDENTID	SUBJECT	SCORE
Class one	1	English	84
Class one	1	Math	77
Class one	1	PE	69
Class one	2	English	81
Class one	2	Math	80

The ranki() function is used to uniformly number members with the same field value. The difference between ranki and rank functions is that the number returned is consecutive, similar to DENSE_RANK. SPL is as follows:

	Α	В
1	<pre>=connect("db") .query("select * from SCORES where CLASS='Class one' order by SUBJECT, SCORE DESC")</pre>	/Connect data source, read scores table and sort by subject and score
2	=A1.derive(ranki(SCORE;SUBJECT):Rank)	/use ranki () function to number for orderly subjects and scores, calculate the ranking of each subject
3	=A2.select(STUDENTID==8)	/Select student information with student ID 8
4	=create(\${A3.(SUBJECT).concat@c()}).record(A3.(Rank))	/Using the result of A3, sort out the ranking of each subject

A4	English	Math	PE
	10	4	14

Calculate the total annual turnover of Shanghai stock index on each trading day in 2019.

Date	Open	Close	Amount
2019/12/31	3036.3858	3050.124	2.27E11
2019/12/30	2998.1689	3040.0239	2.67E11
2019/12/27	3006.8517	3005.0355	2.58E11
2019/12/26	2981.2485	3007.3546	1.96E11
2019/12/25	2980.4276	2981.8805	1.9E11

SPL is as follows, in which the cum() function is used to calculate the cumulative transaction amount:

	Α	В
1	=file("000001.csv").import@ct()	/Import data file
2	=A1.select(year(Date)==2019).sort(Date)	/Select records of 2019 and sort by date
3	=A2.derive(cum('Amount'):CUM)	/Use the cum() function to calculate the cumulative transaction amount

A 3	Date	Open	Close	Amount	CUM
	2019/01/02	2497.8805	2465.291	9.759E10	9.759E10
	2019/01/03	2461.7829	2464.3628	1.07E11	2.046E11
	2019/01/04	2446.0193	2514.8682	1.39E11	3.436E11
	2019/01/07	2528.6987	2533.0887	1.46E11	4.896E11
	2019/01/08	2530.3001	2526.4622	1.23E11	6.126E11

At the beginning of 2014, the sales target for the first quarter was set at 150000 yuan. Query on which day the sales target was achieved. Some data in the sales table is as follows:

OrderID	Customer	SellerId	OrderDate	Amount
10400	EASTC	1	2014/01/01	3063.0
10401	HANAR	1	2014/01/01	3868.6
10402	ERNSH	8	2014/01/02	2713.5
10403	ERNSH	4	2014/01/03	1005.9
10404	MAGAA	2	2014/01/03	1675.0

SPL is as follows, in which the A.iterate() function is used to iteratively calculate the sequence members:

	Α	B
1	=connect("db").query("select * from sales")	/Connect the data source and read the sales table
2	=A1.select(year(OrderDate)==2014)	/Select 2014 data
3	=A2.iterate((@+=Amount, ~~=OrderDate),0,@>150000)	/Iterate using the iterate() function with an initial value of 0. Add the sales amount to the current grid until it is over 150000. Function returns the order date.

CONTENTS

- 1. Locate a member's position in the sequence
- Take the row number of the record corresponding to the maximum / minimum value
- 3. Get the member sequence number that meets the condition
- 4. Segment sequence number of member in sequence
- 5. Get the original sequence number of a sorted member
- 6. Overall positioning of sequence
- 7. Determine whether it is a sequence member
- 8. Find row number of primary key
- 9. Get the row numbers corresponding to TopN records

Positioning

In the following teachers table, the first column is the name of the teacher, the second column is the subject, followed by the course code (null is empty).

Teachers.txt														
Petitti	Matematica	mif	mig	vif	vig	null								
Canales	Apesca	luc	lud	mac	mad	mic	mid	juc	jud	null	null	null	null	
Lucero	NavegacionI	lub	luc	lud	lue	mab	mac	mad	mae	mib	mic	mid	mie	
Bergamaschi	TecPesc	lua	luf	maa	maf	mia	mif	jua	juf	via	vif	null	null	

List the appropriate teachers for each course according to the teachers table and the courses table on the right.

Monday	Tuesday	Wednesday	Thursday	Friday
lua	maa	mia	jua	via
lub	mab	mib	jub	vib
luc	mac	mic	juc	vic
lud	mad	mid	jud	vid
lue	mae	mie	jue	vie
luf	maf	mif	juf	vif
lug	mag	mig	jug	vig

SPL is as follows, in which the pos function is used to obtain the member' s position.

	Α	В
1	=file("Teachers.txt").import()	/Import data file
2	=A1.new(#1:professor,~.array().to(3,A1.fno()).select(~!= null):codeArray)	/Generate a new sequence table with two columns. The first column is the teacher name and the second column is the course list.
3	=file("Courses.txt").import@t().conj(~.array())	/List all courses according to the courses table and merge them into one sequence
4	=A3.(A2.select(codeArray.pos(A3.~)).(professor))	/Loop the courses table, use pos function to find the course in the teachers table and select the appropriate teachers for each class.
5	=create(Monday,Tuesday,Wednesday,Thursday,Friday).r ecord(A4.(~.concat@c()))	/Create a curriculum from Monday to Friday and fill in the teachers accordingly.

A5	Monday	Tuesday	Wednesday	Thursday	Friday
	Bergamaschi,Puebla	Bergamaschi,Pue	Bergamaschi,Puebla	Bergamaschi,Pue	Bergamaschi,Puebla
	Lucero,Puebla,Lu…	Lucero,Mazza,Pu…	Lucero,Puebla,Chi	Lucero,Mazza,Pe	Lucero,Puebla,Vel
	Canales,Lucero,P	Canales,Lucero,M	Canales,Lucero,P	Canales,Lucero,M	Lucero,Velasco,Lu

There are sales table and customer table. Query customers without sales records in 2014.

SPL is as follows, in which A.pos() function is used to locate the position of members in the sequence:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from Sales where year(OrderDate)=2014")	/Query 2014 sales records
3	=A1.query("select * from Customer")	/Query customer table
4	=A3.(ID).sort()	/Select customer ID from customer table
5	=A2.align(A4.len(), A4.pos@b(CustomerID))	/The sales table is grouped in alignment to the customer ID, and the pos function is used to locate the customer ID. Because the customer ID is in order, the @b option is used here for binary search, which can locate more quickly.
6	=A3(A5.pos@a(null))	/Use the @a option of the pos() function to select all customer information without sales records (the value is null), otherwise only one will be selected.

A 6	ID	Name	State	
	ALFKI	CMA-CGM	Texas	
	CENTC	Nedlloyd	Florida	

On the day when the closing price of Shanghai stock index is at its highest point, find the increase rate compared to the previous day.

Date	Open	Close	Amount
2019/12/31	3036.3858	3050.124	2.27E11
2019/12/30	2998.1689	3040.0239	2.67E11
2019/12/27	3006.8517	3005.0355	2.58E11
2019/12/26	2981.2485	3007.3546	1.96E11
2019/12/25	2980.4276	2981.8805	1.9E11

We need to know the record row number of the stock market's highest point, and then compare it with the previous trading day to get the result.

SPL is as follows, where pmax function is used to get the row number of the maximum value:

	Α	В
1	=file("000001.csv").import@ct()	/Import data file
2	=A1.sort(Date)	/Sort by date
3	=A2.pmax(Close)	/Take the row number of the highest point of the stock market
4	=A2(A3).Close/A2.m(A3-1).Close-1	/Use the closing price of the day and the closing price of the previous day to calculate the increase rate

Similarly, pmin function can be used to get the row number of the minimum value:

	Α	В
3	=A3.pmin(Close)	/Take the row number of the lowest point of the stock market

The records of maximum value are not necessarily unique. If you want to return all row numbers, you can use pmax@a option:

	Α	В
3	=A2.pmax@a(Close)	/Take the row numbers of all the records of the highest point of the stock market
4	=A3.(A2(A3.~).Close/A2.m(A3.~-1).Close-1)	/Use the closing price of the day and the closing price of the previous day to calculate the increase rate in loop

If you want to locate from back to front, you can use the pmax@z option:

	Α	В
3	=A2.pmax@z(Close)	/Take the row numbers of the records of the highest point of the stock market from back to front

For the trading days when the closing price of Shanghai stock index rises by more than 3% in 2019, find the trading amount increase.

Date	Open	Close	Amount
2019/12/31	3036.3858	3050.124	2.27E11
2019/12/30	2998.1689	3040.0239	2.67E11
2019/12/27	3006.8517	3005.0355	2.58E11
2019/12/26	2981.2485	3007.3546	1.96E11
2019/12/25	2980.4276	2981.8805	1.9E11

We need to find the row number where the closing price of the stock market has risen by more than 3%, and then compare it with the previous trading day to get the result. SPL is as follows, in which pselect() function is used to locate the row number of the member:

	Α	В
1	=file("000001.csv").import@ct()	/Import data file
2	=A1.select(year(Date)==2019).sort(Date)	/Select the stock market records for 2019
3	=A2.pselect@a(Close/Close[-1]>1.03)	/Take the row number of the record where the closing price of the stock market has increased by more than 3%, and the @a option will return all the row numbers that meet the conditions
4	=A3.new(A2(~).Date:Date, A2(~).Amount/A2(~- 1).Amount:'Amount increase')	/Use daily trading amount and trading amount of the previous day to calculate the increase in loop

A3	Member	A4	Date	Amount increase
	161		2019/02/25	1.758490566037736
	187		2019/03/29	1.3344827586206895
	211		2019/05/10	1.3908629441624365

We can see that the trading volume of the three days when the closing price rose by more than 3% was significantly higher than the previous day.

The following is an employee table. According to the salary, the employees are divided into below 8000, 8000-12000 and above 12000, and the number of each group is counted.

ID	NAME	BIRTHDAY	SALARY
1	Rebecca	1974-11-20	7000
2	Ashley	1980-07-19	11000
3	Rachel	1970-12-17	9000
4	Emily	1985-03-07	7000
5	Ashley	1975-05-13	16000

SPL is as follows, in which the overall positioning function pseg(x) is used:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from EMPLOYEE")	/Query employee table
3	[0,8000,12000]	/Define salary interval
4	=A2.align@a(A3.len(),A3.pseg(SALARY))	/Use pseg function to get the salary interval
5	=A4.new(A3 (#):SALARY,~.count():COUNT)	/Count the number of each group

A5	
SALARY	COUNT
0	308
8000	153
12000	39

The following is an employee table. Employees are divided into less than 10 years, 10-20 years and more than 20 years according to the date of entry, and the average salary of each group is calculated.

ID	NAME	HIREDATE	SALARY
1	Rebecca	2005-03-11	7000
2	Ashley	2008-03-16	11000
3	Rachel	2010-12-01	9000
4	Emily	2006-08-15	7000
5	Ashley	2004-07-30	16000

SPL is as follows, in which the overall positioning function pseg(x,y) is used:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from EMPLOYEE")	/Query employee table
3	[0,10,20]	/Define interval
4	=A2.align@a(A3.len(),A3.pseg(year(now())- ~,year(HIREDATE)))	/Use pseg function to get the interval each hire date belongs to
5	=A4.new(A3(#):EntryYears,~.avg(SALARY):AvgSalary)	/Calculate the average salary of each group

A5

EntryYears	AvgSalary
0	6807.69
10	7417.78
20	7324.32

The following is an employee table. Find the entry order of the three oldest employees.

ID	NAME	BIRTHDAY	HIREDATE
1	Rebecca	1974-11-20	2005-03-11
2	Ashley	1980-07-19	2008-03-16
3	Rachel	1970-12-17	2010-12-01
4	Emily	1985-03-07	2006-08-15
5	Ashley	1975-05-13	2004-07-30

A.psort() function is used here to get the original sequence number of a sorted member. It is worth noting that the psort() function does not change the original sequence order. SPL is as follows:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from EMPLOYEE order by HIREDATE")	/Query employee table and sort by hire date
3	=A2.psort(BIRTHDAY)	/Get the sequence number of employee's birthday
4	=A2(A3.to(3).sort())	/Select the three oldest employees in the employee table

A5	ID	NAME	BIRTHDAY	HIREDATE
	296	Olivia	1968-11-05	2006-11-01
	440	Nicholas	1968-11-24	2008-07-01
	444	Alexis	1968-11-12	2010-12-01

The following is the posting records. Group posts by labels and count the frequency of each label.

ID	TITLE	Author	Label
1	Easy analysis of Excel	2	Excel,ETL,Import,Export
2	Early commute: Easy to pivot excel	3	Excel,Pivot,Python
3	Initial experience of SPL	1	Basics,Introduction
4	Talking about set and reference	4	Set,Reference,Dispersed,SQL
5	Early commute: Better weapon than Python	4	Python,Contrast,Install

SPL is as follows, and A.pos() function is used for overall positioning:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from PostRecord")	/Query PostRecord
3	=A2.conj(Label.split(",")).id()	/Separate the labels by commas and merge them into a sequence to get all the labels without duplicate values.
4	=A2.align@ar(A3.len(),A3.pos(Label.split(",")))	/Use the pos() function to overall locate the position of the post' s labels in all labels. Then use the @r option of the align() function to group by positioning.
5	=A4.new(A3(#):Label,~.count():Count).sort@z(Count)	/Count the number of posts per label, in descending order

A5	Label	Count
	SPL	7
	SQL	6
	Basics	5

The following is the official language table of all countries in the world. Check the countries whose official languages include Chinese and English.

Country	Language
China	Chinese
UK	English
Singapore	English
Singapore	Malay
Singapore	Chinese
Singapore	Tamil
Malaysia	Malay

SPL is as follows. The A.contain() function is used to determine whether it is a sequence member:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from Language")	/Query official language table
3	=A2.group(Country)	/Group by country
4	=A3.select(~.(Language).contain("Chinese","English"))	/Use the contain() function to determine whether the current country's languages include Chinese and English.
5	=A4.(Country)	/Get country list

There are product table and category table. Query the product records whose product categories are not registered in the category table. As the following figure:

SPL is as follows, and the A.pfind() function is used to find the row number of the primary key:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from Category").keys(ID)	/Query category table, and set ID as primary key
3	=A1.query("select * from Product")	/Query product table
4	=A3.select(A2.pfind(CategoryID)==0)	/Use the pfind function to find the row number with the primary key equal to the category ID in the category table, and return 0 to indicate that it does not exist. In the product table, select the record whose category ID does not exist.

A4	ID	Name	CategoryID	
	12	German cheese		
	26	Spun sugar	9	

For the three days with the highest closing price of Shanghai stock index in 2019, find the increase rate of the transaction amount compared with the previous day.

Date	Open	Close	Amount
2019/12/31	3036.3858	3050.124	2.27E11
2019/12/30	2998.1689	3040.0239	2.67E11
2019/12/27	3006.8517	3005.0355	2.58E11
2019/12/26	2981.2485	3007.3546	1.96E11
2019/12/25	2980.4276	2981.8805	1.9E11

We need to know the row number of the highest three-day closing price records of the stock market, and then compare it with the previous trading day to get the result. SPL is as follows, where the ptop() function is used to get the row number of the highest three days:

	Α	В
1	=file("000001.csv").import@ct()	/Import data file
2	=A1.select(year(Date)==2019)	/Select records of 2019
3	=A2.ptop(-3, Close)	/Use ptop function to get the row number of the highest three-day closing price records3 indicates to get top 3 from large to small. If it is a positive integer, it means getting from small to large.
4	=A3.run(~=A2(~).Amount/A2(~+1).Amount-1)	/Use daily trading amount and trading amount of the previous day to calculate the increase in loop.

CONTENTS

- Get the record corresponding to the minimum value
- 2. Get the record corresponding to the maximum value
- 3. Select member that meets the condition
- 4. Return the corresponding member in the sequence according to the section number
- 5. Sort
- 6. Get TopN records
- 7. Find the record where the primary key is located

Take the score table as an example to find the student ID with the lowest score in mathematics in class one.

CLASS	STUDENTID	SUBJECT	SCORE
Class one	1	English	84
Class one	1	Math	77
Class one	1	PE	69
Class one	2	English	81
Class one	2	Math	80

SPL is as follows, in which minp() function is used to take the record where the minimum value is, and then the student ID is taken from it:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from Scores where SUBJECT='Math' and CLASS='Class one'")	/Query the math scores of class one
3	=A2.minp(SCORE)	/Use minp function to get the record with lowest score
4	=A3.STUDENTID	/Take student ID from record

The record of the minimum value is not necessarily unique. If you want to return all records, you can use the minp@a option:

	Α	В
3	=A2.minp@a(SCORE)	/Get all the records with lowest score
4	=A3.(STUDENTID)	/Take student ID sequence from multiple records

A 3	CLASS	STUDENTID	SUBJECT	SCORE	A4	STUDENTID
	Class one	5	Math	60		5
	Class one	14	Math	60		14

Take the medal table of the Olympic Games as an example to seek the national information of the longest number of Olympic Games with the total result ranking first in a row.

Game	Nation	Gold	Silver	Copper
30	USA	46	29	29
30	China	38	27	23
30	UK	29	17	19
30	Russia	24	26	32
30	Korea	13	8	7

SPL is as follows, in which maxp() function is used to take the record corresponding to the maximum value:

	Α	В
1	=file("Olympic.csv").import@cqt()	/Import the medal table of Olympic Games
2	=A1.sort@z(Game, 1000000*Gold+1000*Silver+Copper)	/Sort by game number and total score in descending order
3	=A2.group@o1(Game)	/Take one from each game, i.e. the first because the data is in order
4	=A3.group@o(Nation)	/Group neighboring countries in the same order
5	=A4.maxp(~.len())	/Take the longest group

A5	Game	Nation	Gold	Silver	Copper
	10	USA	41	32	30
	9	USA	22	18	16
	8	USA	45	27	27
	7	USA	41	27	28

The world urban population table is as follows:

Continent	Country	City	Population
Africa	Egypt	Cairo	6789479
Asia	China	Shanghai	24240000
Europe	Britain	London	7285000

List the names and population of cities with a population of more than 2 million in Europe and Africa in columns (each column is sorted from most to least). The expected result is as follows:

Europe City	Population	Africa City	Population
Moscow	8389200	Cairo	6789479
London	7285000	Kinshasa	5064000
St Petersburg	4694000	Alexandria	3328196

SPL is as follows, in which A.select() function is used to select qualified members:

		Α		В
1	=connect("db").query("select * in('Europe', 'Africa') and Popula	from World where Continent ation >= 2000000")	Connect to the database 2 million people in Europ	e and retrieve records of more than he and Africa
2	=A1.select(Continent:"Europe")	/Using the select() function	on to retrieve European data
3	=A1.select(Continent:"Africa")		/Using the select() function	on to retrieve African data
4	=create('Europe City',Populatic	on,'Africa City', Population)	/Create an empty sequer structure	ice table according to target
5	=A4.paste(A2.(City),A2.(Popula	ation),A3.(City),A3.(Populati	on)) /Paste the sequence of va column using the paste()	alues into the corresponding function
A5	Europo City	Population	Africa City	Population
		Fopulation	Anica City	Fopulation
	Moscow	8389200	Cairo	6789479
	Moscow London	8389200 7285000	Cairo Kinshasa	6789479 5064000
	Moscow London St Petersburg	8389200 7285000 4694000	Cairo Kinshasa Alexandria	6789479 5064000 3328196

Take the score sheet as an example to count the number of excellent, pass and fail in subject English.

CLASS	STUDENTID	SUBJECT	SCORE
Class one	1	English	84
Class one	1	Math	77
Class one	1	PE	69
Class one	2	English	81
Class one	2	Math	80

SPL is as follows, in which the A.segp() function is used to get the members in the sequence corresponding to the section number:

	Α	В
1	=connect("db").query("select * from Scores where SUBJECT='English'")	/Connect to the database and query English scores
2	=create(Assessment,Score).record(["fail",0,"pass",60,"excellent",90])	/Create score and assessment comparison table
3	=A1.derive(A2.segp(Score,SCORE).Assessment:Assessment)	/Using segp function to return assessment corresponding to score
4	=A3.groups(Assessment;count(1):Count)	/Group and count according to assessment

A4	Assessment	Count
	excellent	6
	fail	4
	pass	18

The economic indicators of each country in the world in a certain year are as follows, and the comparison of economic indicators between China and the United States with a large gap is required.

1IndicatorLastPreviousMinMaxUnitFrequencyRange2Government Debt: % of GDP105.7107.331.8107.3%Yearly1969 - 2017	803-28
2 Goverment Debt: % of GDP 105.7 107.3 31.8 107.3 % Yearly 1969 - 2017	303-28
70 1 CALLY 70 OF CLUE 70 OF CL	303-28
3 2017 2016 1974 2016 1 Value Updated on 201	
4 Pusiness Configuence: Net Palance Monthly Jan 1948 - J	lar 2018
5 Mar-18 Feb-18 May-80 Jul-50 70 Four Updated on 20	804-02
6 Foreign Direct Investment 49,814.00 105,653.00 -75,269.00 246,224.00 USD mn Quarterly Mar 1960 -	Dec 2017
7 Dec-17 Sep-17 Mar-14 Mar-15 OSD IIII Qual City Updated on 20	803-21
8 Total Imports Growth Jan 1990 - J	eb 2018
9 Feb-18 Jan-18 May-09 May-10 May-10 Updated on Ma	2018
10 Money Supply M2 13,858,400.00 13837800.00 286,600.00 USD mn Monthly Jan 1959 - J	eb 2018
11 Feb-18 Jan-18 Jan-59 Feb-18 GSD IIII Volidity Updated on 20	803-29
12 Forecast: Gover-smeet Revenue 7,612.00 7,322.72 3,270.25 7,612.00 USD hn Vearly 2001 - 2022	
13 2022 2021 2002 2022 2021 Updated on 201	710-10
14 Motor Vehicle Produ-sction 11,189,985.00 12,180,301.00 5,377,687.00 12,279,582.00 Unit Semia-noual Dec 2001 -	Dec 2017
15 Dec-17 Dec-16 Jun-12 Dec-02 Off Updated on 20	803-08
16 Teled-ensity: Fixed Line 37.09 38.4 26.44 67.64 Number Vearly 1960 - 2016	
17 2016 2015 1960 2000 Tearly Updated on 20	7
18 Natural Gas: Exports 65,542.00 50,502.00 4,000.00 65,542.00 Cub m mn Vearly 1995 - 2016	
19 2016 2015 1996 2016 Updated on 20°	706-13
20 Real GDP Growth Ouarterly Mar 1948 -	Dec 2017
21 Dec-17 Sep-17 Jun-09 Dec-50 Dec-50 Updated on Ma	2018
22 Labour Producertivity Growth 0.9 -2.65 9.72 % Outsterly Mar 1949 -	Dec 2017
23 Dec-17 Sep-17 Mar-74 Dec-50 War Updated on 20	803-28
24 Domestic Credit Growth Dec 2002 -	Dec 2016
25 Dec-16 Sep-16 Jun-10 Mar-08 Of United on 20	803-19
United States China Japan Germany France United Kingdom (+)	

SPL is as follows, in which the A.sort() function is used to sort the data:

	Α	В
1	=file("Indicators.xlsx").xlsopen()	/Open excel file
2	=A1.xlsimport@t(Indicator,Last).select(Indicator!=null)	/Import the first sheet (U.S.), select the record whose indicator is not null
3	=A1.xlsimport@t(Indicator,Last;"China").select(Indicator!=null)	/Import China sheet, select the record whose indicator is not null
4	=A2.join(Indicator,A3:Indicator,Last:'China').rename(Last:'Unite d States')	/Join US data according to indicator name, add China indicator field
5	=A4.sort@z(abs('United States'-'China'))	/Sort in descending order by the absolute value of the difference between China and US indicators. The sort function is used for sorting, and the @z option indicates descending order.

A5	Indicator	Indicator United States	
	Minerals Production	2118592432	4358945768
	Number of Subscriber Mobile	416684000	1364934000
	Employed Persons	155215000	776400000
	Exports: ICT Goods	1.4175230767E8	6.0755925913E8

Take the score sheet as an example to find the top two students in each subject in each class.

CLASS	STUDENTID	SUBJECT	SCORE
Class one	1	English	84
Class one	1	Math	77
Class one	1	PE	69
Class one	2	English	81
Class one	2	Math	80

SPL is as follows, in which the A.top() function is used to get the first n / last n members:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from Scores")	/Query student scores
3	=A2.group(CLASS,SUBJECT;~.top(-2;SCORE):TOP2)	/Group by class and subject and take out the top two scores of each group
4	=A3. conj(TOP2)	/Combine the top two records of all classes and subjects

A4	CLASS	STUDENTID	SUBJECT	SCORE
	Class one	4	English	96
	Class one	9	English	93
	Class one	13	Math	97
	Class one	10	Math	97

There are course table and course selection table. Check the courses selected by students:

		SelectCou	irse		
ID	NAME	TEACHERID	ID	STUDENTID	COURSE
1	Environmental protection and	5	1	59	2,7
2	Mental health of College Students	1	2	43	1,8
3	Computer language Matlab	8	3	52	2,7,10

ID	STUDENTID	COURSE1	COURSE2	COURSE3	
1	59	Mental health of College Students	Into Shakespeare		
2	43	Environmental protection and	Modern economics		
3	52	Mental health of College Students	Into Shakespeare	Music appreciation	

SPL is as follows, where find() function is used to find the record where the primary key is located:

	Α	В
1	=connect("db")	/Connect to database
2	=A1.query("select * from Course").keys(ID)	/Read course table, and set primary key ID
3	=A1.query("select * from SelectCourse")	/Read SelectCourse table
4	=A3.run(COURSE=COURSE.split@cp())	/Split the courses in the SelectCourse table by commas and assign them to the course field
5	=A4.max(COURSE.len())	/Find the maximum number of selected courses
6	=create(ID,NAME, \${A5.("COURSE"+string(~)).concat@c()})	/Create an empty table, and the course column is created according to the maximum number
7	>A4.run(A6.record([ID,STUDENT_NAME] COURSE.(A2. find(~).Name)))	/Loop the SelectCourse table, use the find() function to find the record where the course primary key is located, and find the course name. And insert the combined records into the A6 sequence table.

A6	ID	STUDENTID	COURSE1	COURSE2	COURSE3
	1	59	Mental health of College Students	Into Shakespeare	
	2	43	Environmental protection and	Modern economics	
	3	52	Mental health of College Students	Into Shakespeare	Music appreciation

	Α	В
7	>A4.run(A6.record([ID,STUDENT_NAME] COURSE.(~.r ow(A2).Name)))	/In A7, row() function can also be used to find the row number in the sequence. A.find(~) is equivalent to ~.row(A)

THANKS

