
Set
operations

目录
CONTENTS

01 When members are

basic data types
02 When members

are records
03 Big data

operations

1. Concatenation

2. Intersection

3. Union

4. Difference

5. XOR

6. Operations on more than two sets

1. Reference eligible records directly

2. Merge sets by certain fields

3. Merge sets by the primary key

4. Merge sets by all fields

5. When records are note ordered by the key

1. Concatenation of sets

2. Merge sets by column values

When members
are basic data

types

1. Concatenation

2. Intersection

3. Union

4. Difference

5. XOR

6. Operations on more than two sets

1. Concatenation

S2014.txt and S2015.txt store sale records in 2014 and 2015 respectively.

They are of same structure. Task: Find how many times each customer

order a product during the two years.

ID Customer Date Amount

10400 EASTC 2014/01/01 3063.0

10401 RATTC 2014/01/01 3868.6

10402 ERNSH 2014/01/02 2713.5

… … … …

1. Concatenation

 A B

1 =file("S2014.txt").import@t(Customer) /Import customers of 2014

2 =file("S2015.txt").import@t(Customer) /Import customers of 2015

3 =A1 | A2
/Use “|” to concatenate customers, including the
duplicate ones, of the two years.

4 =A3.groups(Customer; count(~):Count) /Count the times each customer order a product

The SPL script uses “|”to calculate the concatenation:

Product Count

ANATR 5

ANTON 6

… …

A4

2. Intersection

ID StudentID Subject

1 2 Painting

2 4 Dance

3 3 Robot

4 2 Dance

5 5 Writing

… … …

Task: Find the students who enroll in both the painting class and dancing

class. The table structure is as follows:

2. Intersection

The SPL script uses “^” to get the intersection:

 A B

1 =file("Interest.txt").import@t() /Import the text file

2 =A1.select(Subject:"Painting") /Get records of painting

3 =A1.select(Subject:"Dance") /Get records of dancing

4 =A2.(StudentID) ^ A3.(StudentID)
/Use “^” to get intersection of students who
are going to learn painting and dancing

A4 Member

2

8

11

…

3. Union

ID StudentID Subject

1 2 Painting

2 4 Dance

3 3 Robot

4 2 Dance

5 5 Writing

… … …

Task: Get records of students who enroll in painting and dancing.

The table structure is as follows:

3. Union

The SPL script uses “&”to get union:

 A B

1 =file("Interest.txt").import@t() /Import the text file

2 =A1.select(Subject:"Painting") /Get records of painting

3 =A1.select(Subject:"Dance") /Get records of dancing

4 =A2.(StudentID) & A3.(StudentID)
/Use“&”to get students who enroll in
painting and dancing

A4 Member

2

4

8

…

4. Difference

Task: Find the new customers in 2014 according to Sales table and Customer

table, that is, the customers that are not included in the Customer table.

Customer

ID

Name

City

…

Sales

ID

Customer

OrderDate

…

4. Difference

 A B

1 =connect("db") /Connect to the database

2
=A1.query("select * from Sales where
year(OrderDate)=2014")

/Get sales records of 2014

3 =A1.query("select * from Customer") /Get records from Customer table

4 =A2.id(Customer)
/Use id function to remove duplicate sales records to
get a sequence of unique customers

5 =A3.(ID)
/Get the sequence of customer IDs from Customer
table

6 =A4\A5 /Use“\” to get the difference

The SPL script uses “\”to get difference:

Members

DOS

HUN

URL

A6

Note: This example is for explaining how to perform a difference operation. Actually it’s more

convenient to get same result using A.switch@d()/A.join@d(), which perform a join and filtering.

5. XOR

Student scores are stored in different files by semesters. Task: find the

student IDs whose total scores rank in top 10 only once in both the first

and second semesters.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

5. XOR

The SPL script uses “%” to get XOR.

 A B

1 =file("Scores1.csv").import@ct() /Import scores of the first semester

2 =file("Scores2.csv").import@ct() /Import scores of the first semester

3 =A1.groups(STUDENTID; sum(SCORE):Score)
/Group by students and sum their total scores in the
first semester

4 =A2.groups(STUDENTID; sum(SCORE):Score)
/Group by students and sum their total scores in the
second semester

5 =A3.top(-10;Score).(STUDENTID)
/Get student IDs whose total scores rank in top 10 in
the first semester

6 =A4.top(-10;Score).(STUDENTID)
/Get student IDs whose total scores rank in top 10 in
the second semester

7 =A5%A6 /Get unique student IDs from A5 and A6

Member

2

9

4

10

…

A5
Member

12

1

8

4

…

A6
Member

2

9

10

7

…

A7

6. Operation on more than two sets: Concatenation

The relationship of Order table and OrderDetail table are that of main table and
subtable. Each Order record corresponds to multiple OrderDetail records.

Order

ID

Customer

Date

OrderDetail

OrderID

Number

Product

Amount

★

★

★

The OrderDetail records vary in length. Task: to get the following table:

ID Customer Date Product1 Amount1 Product2 Amount2 Product3 Amount3

1 3 20190101 Apple 5 Milk 3 Salt 1

2 5 20190102 Beef 2 Pork 4

3 2 20190102 Pizza 3

6. Operation on more than two sets: Concatenation

 A B
1 =connect("db") /Connect to the database

2
=A1.query("select * from OrderDetail left join Order on
Order.ID=OrderDetail.OrderID")

/Import the two tables and left join Order table
by order IDs

3 =A2.group(ID) /Group retrieved records by order ID

4
=A3.max(~.count()).("Product"+string(~)+","+"Amount
"+string(~)).concat@c()

/Get the group having the most members and
define the data structure for the result table

5 =create(ID,Customer,Date,${A4})
/Create a table sequence according to the
defined data structure

6
>A3.run(A5.record([ID,Customer,Date]|~.([Product,Amount]).

conj()))

/Loop through the groups to piece members
together into a sequence and concatenate
Product and Amount from these groups using
conj() function, and then insert the complete
records into A5’s table sequence

The SPL script uses A.conj() function to concatenate members of sets:

6. Operation on more than two sets: Concatenation

Below is JSON data recording the number of confirmed cases worldwide at a specific

time point. Task: Calculate the total confirmed cases worldwide.

[

{Region:"China",Confirmed:[

 {Region:"Hubei",Confirmed:[

 {Region:"Wuhan",Confirmed:51986},

 {Region:"Xiaogan",Confirmed:3009},

 {Region:"Huanggang",Confirmed:3791},

 …]

 },

 {Region:"Taiwan",Confirmed:18},

 …]

},

{Region:"Thailand",Confirmed:33},

…]

6. Operation on more than two sets: Concatenation

 A B
1 =json(file("COVID-19.json").read()) /Read in the JSON data

2 =A1.field@r("Confirmed")
/Use A.field@r() to get all Confirmed fields
recursively

3 =A2.conj@r()
/Use A.conj@r() to perform recursive
concatenation

4 =A3.sum() /Sum the number of confirmed cases

The SPL script uses A.conj@r() function to concatenate members of

sequences recursively:

A2

Member

[[51986,3009,3791],[58,…]

251

33

28

19

16

…

A4

Member

64438

A3

Member

51986

3009

3791

1447

1206

1125

…

6. Operation on more than two sets: Union & Difference

Here are Course table and SelectCourse table. The selected courses can be multiple that

separated by comma. Task: Find courses that are not selected by any students.

Course SelectCourse

ID STUDENTID COURSE

1 59 2,7

2 43 1,8

3 52 2,7,10

4 44 1,10

5 37 5,6

6 57 3

… … …

ID NAME TEACHERID

1 Environmental protection and … 5

2 Mental health of College Students 1

3 Computer language Matlab 8

4 Electromechanical basic practice 7

5 Introduction to modern life science 3

6 Modern wireless communication system 14

… … …

A6

6. Operation on more than two sets: Union & Difference

 A B
1 =connect("db") /Connect to database
2 =A1.query("select * from Course") /Query the Course table
3 =A1.query("select * from SelectCourse") /Query the SelectCourse table

4 =A3.union(COURSE.split@cp())
/Split selected courses in SelectCourse table by comma and get
union of Course records using union() function

5 =A2.(ID) /Get course IDs from the Course table

6 =A2(A5.pos([A5,A4].diff()))
/Get difference of course IDs in the two tables, the courses that
no students select, find their positions in A5 and get them from
A2

The SPL script uses A.union() function to get the union of sequences whose members are

sequences, and A.diff() function to get their difference:

ID NAME TEACHERID

1 Fundamentals of economic management 21

6. Operation on more than two sets: Intersection

Below is part of the sales table. Task: Find the customers whose order

amounts rank top 20 in each month of 2014.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

6. Operation on more than two sets: Intersection

The SPL script uses A.isect() function to get intersection of the sets:

 A B

1 =connect("db").query("select * from sales") /Connect to data source to query the sales table

2 =A1.select(year(OrderDate)==2014) /Select records of 2014

3
=A2.group(month(OrderDate)) /Use group() function to group records of 2014

by month

4 =A3.(~.group(Customer)) /Group the groups by Customer

5
=A4.(~.top(-20;sum(Amount))) /Loop through records of each month to find

customers whose order amounts rank top 20

6 =A5.(~.(Customer)) /List the eligible customers

7 =A6.isect() /Get intersection of groups using isect() function

Member

HANAR

SAVEA

A7

6. Operation on more than two sets: Intersection

You can use A.isect(x) function to get intersection of sets whose members are calculated

with expression x.

 A B

1 =connect("db").query("select * from sales") /Connect to data source to query the sales table

2 =A1.select(year(OrderDate)==2014) /Select records of 2014

3
=A2.group(month(OrderDate)) /Use group() function to group records of 2014 by

month

4 =A3.(~.group(Customer)) /Group the groups by Customer

5
=A4.(~.top(-20;sum(Amount))) /Loop through records of each month to find

customers whose order amounts rank top 20

6
=A5.isect(~.(Customer)) /Get the eligible customers from each group and

calculate intersection of them using isect() function

Member

HANAR

SAVEA

A6

6. Operation on more than two sets: XOR

Task: Find customers whose monthly order amounts rank top 3 only

once in 2014 according to the following Sales table:

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

6. Operation on more than two sets: XOR

The SPL script uses A.xunion() function to union unique members of sequences in a

bigger sequence:

 A B

1 =file("Sales.csv").import@ct() /Import Sales file

2
=A1.select(year(OrderDate)==2014).group(month(
OrderDate))

/Get records of 2014 and group them by month

3 =A2.(~.groups(Customer; sum(Amount):Amount))
/Group each group by Customer and sum each
customer’s total order amount

4 =A3.(~.top(-3;Amount).(Customer))
/Get customers whose order amount rank top 3 per
month

5 =A4.xunion()
/Use xunion() function to get customers appearing
only once per month

Member

KOENE

HANAR

RATTC

BOTTM

…

A5

When members
are records

1. Reference eligible records directly

2. Merge sets by certain fields

3. Merge sets by the primary key

4. Merge sets by all fields

5. When records are not ordered by

 the key

1. Reference eligible records directly

Task: Below is part of the Sales table. Find the records of 2014 where the

single amounts rank top 3 per month.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

1. Reference eligible records directly

 A B

1 =connect("db") /Connect to data source

2 =A1.query("select * from Sales") /Query Sales table

3 =A2.select(year(OrderDate)==2014) /Get records of 2014

4
=A3.groups(month(OrderDate):Month; top(-3;Amount):Top3) /Group records by month and get records

where the order amounts rank top 3 per month

5
=A4.conj(Top3) /Use conj() to concatenate eligible records into

a table sequence and return it

The SPL script uses A.conj() function to concatenate records from table

sequences into one table sequence:

OrderID Customer SellerId OrderDate Amount

10424 MEREP 7 2014/01/23 11493.2

10417 SIMOB 4 2014/01/16 11283.2

10430 ERNSH 4 2014/01/30 5796.0

… … … … …

A5

1. Reference eligible records directly

You can also use A.merge@o() to concatenate records from table sequence into

one table sequence. It works out same result as A.conj() when @u/@i/@d/@x

options are absent.

OrderID Customer SellerId OrderDate Amount

10424 MEREP 7 2014/01/23 11493.2

10417 SIMOB 4 2014/01/16 11283.2

10430 ERNSH 4 2014/01/30 5796.0

… … … … …

A5

 A B

1 =connect("db") /Connect to data source

2 =A1.query("select * from Sales") /Query Sales table

3 =A2.select(year(OrderDate)==2014) /Get records of 2014

4
=A3.groups(month(OrderDate):Month; top(-3;Amount):Top3) /Group records by month and get records

where the order amounts rank top 3 per month

5
=A4.merge@o(Top3) //Use A.merge@o() to concatenate eligible

records into a table sequence and return it

1. Reference eligible records directly

A company is planning a training session for employees younger than 30

and those have been on board less than 3 years. Task: Find the records of

those employees according to the following Employee table.

ID NAME BIRTHDAY HIREDATE DEPT

1 Rebecca 1974/11/20 2005/03/11 R&D

2 Ashley 1980/07/19 2008/03/16 Finance

3 Rachel 1970/12/17 2010/12/01 Sales

4 Emily 1985/03/07 2006/08/15 HR

… … … … …

1. Reference eligible records directly

 A B

1 =connect("db") /Connect to data source

2 =A1.query("select * from Employee") /Query Employee table

3 =A2.select(age(BIRTHDAY) < 30) /Get employees younger than 30

4
=A2.select(age(HIREDATE) < 3) /Get employees who have been in less than 3

years

5
=[A3,A4].union() /union() unions eligible records and return

them as a table sequence

The SPL script uses A.union() function to get union of eligible records from different

table sequences and return a record sequence:

ID NAME BIRTHDAY HIREDATE DEPT

89 Emily 1990/12/09 2017/02/01 Technology

241 Samantha 1991/12/04 2016/01/01 Finance

393 Hannah 1990/09/06 2016/01/01 Sales

… … … … …

A5

1. Reference eligible records directly

Branch stores information of DVD branch stores; DVD stores DVD titles and categories;

DVDCopy stores information of DVD copies, which are physically owned by branch

stores. Task: Find the branch stores that have less than 4 categories of DVD copies.

Branch

BID

Street

City

DVD

DVDID

Category

Title

DVDCopy

CopyID

DVDID

BID

Status

LastDateRented

LastDateReturned

MemberID

1. Reference eligible records directly

 A B

1 =connect("db") /Connect to data source

2
=Branch=A1.query("select * from Branch") /Query Branch table and define the result as a variable

named Branch

3
=DVD=A1.query("select * from DVD") /Query DVD table and define the result as a variable

named DVD

4
=DVDCopy=A1.query("select * from DVDCopy") /Query DVDCopy table and define the result as a

variable named DVDCopy

5
=DVDCopy.switch(DVDID,DVD:DVDID; BID,Branch:BID) /Replace DVDCopy.DVDID with corresponding records

in DVD table

6 =DVDCopy.select(STATUS!="Miss" && LASTDATERETURNED!=null) /Select the lost and unreturned DVD copies

7 =A6.group(BID) /Group the filtered records by BID

8
=A7.select(~.icount(DVDID.CATEGORY)<4) /Find branches having less than 4 categories of DVD

copies

9
=A8.(BID) | (Branch \ A7.(BID)) /All desired branches. A8.(BID) are those having less

than 4 categories of copies; Branch \ A7.(BID) are those
that don’t have certain copies.

The SPL script uses “|”to get the sequence of concatenation, and “\” to get the sequence of difference:

BID STREET CITY

B002 Street2 Houston

B003 Street3 LA

B004 Street4 Lincoln

A9

2. Merge sets by certain fields

The Math scores and English scores are stored respectively in Math.txt and English.txt. The

two files are of same structure. Task: Calculate the total score for each student.

CLASS STUDENTID SUBJECT SCORE

1 1 Math 77

1 2 Math 80

… … … …

CLASS STUDENTID SUBJECT SCORE

1 1 English 84

1 2 English 81

… … … …

Math：

English：

2. Merge sets by certain fields

 A B

1 =file("Math.txt").import@t() /Import Math.txt

2 =file("English.txt").import@t() /Import English.txt

3 =A1.sort(CLASS,STUDENTID) /Sort Math table by CLASS and STUDENTID

4 =A2.sort(CLASS,STUDENTID) /Sort English table by CLASS and STUDENTID

5
=[A3,A4].merge(CLASS,STUDENTID) /merge() to concatenate records by CLASS and

STUDENTID

6
=A5.groups@o(CLASS,STUDENTID;

~.sum(SCORE):TOTALSCORE)
/Use groups@o() to group records, which creates a
new group whenever the value changes, and sum
scores for each student

The SPL script uses A.merge(xi, …) function to concatenate table sequences by

expressions xi, … :

CLASS STUDENTID TOTALSCORE

1 1 161

1 2 161

1 3 159

… … …

A6

2. Merge sets by certain fields

Sales records are stored in Online table and Store table according to distribution

channels. They are of same structure. Records during promotion periods of both

channels are stored in both tables. Task: Calculate the actual total sales.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

2. Merge sets by certain fields

 A B

1 =file("Online.txt").import@t() /Import Online.txt

2 =file("Store.txt").import@t() /Import Store.txt

3 =A1.sort(OrderID) /Sort Online table by OrderID

4 =A2.sort(OrderID) /Sort Store table by OrderID

5
=[A3,A4].merge@u(OrderID) /merge@u() merges two tables by OrderID and

delete duplicates at the same time

6 =A5.sum(Amount) /Sum the sales amounts

The SPL script uses A.merge@u(xi, …) function to remove duplicate records during the

order-based merge:

Member

678756.41

A6

2. Merge sets by certain fields

Task: According to the previous files, we want to find the number of sales records

that are stored in both tables.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

2. Merge sets by certain fields

 A B

1 =file("Online.txt").import@t() /Import Online.txt

2 =file("Store.txt").import@t() /Import Store.txt

3 =A1.sort(OrderID) /Sort Online table by OrderID

4 =A2.sort(OrderID) /Sort Store table by OrderID

5
=[A3,A4].merge@i(OrderID) /merge@i() merges two tables by OrderID to return

a table sequence of their common records

6 =A5.count() /Count the common records

The SPL script uses A.merge(xi, …)@i to get a table sequence consisting of common

members of A(i)…:

Member

70

A6

2. Merge sets by certain fields

The transaction records in March, 2015 are stored in old.csv and new.csv. Both use

UserName and Date as their logical primary keys. Task: Find the newly-added, deleted and

modified records.

UserName Date SaleValue SaleCount

Rachel 2015-03-01 4500 9

Rachel 2015-03-03 8700 4

Tom 2015-03-02 3000 8

Tom 2015-03-03 5000 7

Tom 2015-03-04 6000 12

John 2015-03-02 4000 3

John 2015-03-02 4300 9

John 2015-03-04 4800 4

UserName Date SaleValue SaleCount

Rachel 2015-03-01 4500 9

Rachel 2015-03-02 5000 5

Ashley 2015-03-01 6000 5

Rachel 2015-03-03 11700 4

Tom 2015-03-03 5000 7

Tom 2015-03-04 6000 12

John 2015-03-02 4000 3

John 2015-03-02 4300 9

John 2015-03-04 4800 4

old.csv new.csv

2. Merge sets by certain fields

 A B

1 =file("old.csv").import@ct() /Import old.csv

2 =file("new.csv").import@ct() /Import new.csv

3 =A1.sort(UserName,Date) /Sort old table by UserName and Date

4 =A2.sort(UserName,Date) /Sort new table by UserName and Date

5
=new=[A4,A3].merge@d(UserName,Date) /merge@d() deletes records of A3 from A4 while

performing order-based merge to generate a table
sequence of new records

6
=delete=[A3,A4].merge@d(UserName,Date) /merge@d() deletes records of A4 from A3 while

performing order-based merge to generate a table
sequence of deleted records

7
=diff=[A4,A3].merge@d(UserName,Date,SaleValue,SaleCount) /merge@d() deletes records of A3 where the

specified field values change from A4 while
performing order-based merge

8
=update=[diff,new].merge@d(UserName,Date) /merge@d() deletes new from updated records while

performing order-based merge to generate a table
sequence of updated records

9
return [new, delete, update] /Return a sequence of new, deleted and updated

records

The SPL script uses A.merge@d(xi, …) function to remove members of A(2) &…A(n) from A(1) to

generate a new table sequence:

new

2. Merge sets by certain fields

UserName Date SaleValue SaleCount

Ashley 2015-03-01 6000 5

Rachel 2015-03-02 5000 5

delete

UserName Date SaleValue SaleCount

Tom 2015-03-02 3000 8

update

UserName Date SaleValue SaleCount

Rachel 2015-03-03 11700 4

A9

Members

[[Ashley,2015-03-01,6000,5], …]

[[Tom,2015-03-02,3000,8]]

[[Rachel,2015-03-03,11700,4]]

2 Merge sets by certain fields

Below are same-structure files generated by random samplings. Task: Count

the unique IDs selected by the two files.

ID Predicted_Y Original_Y

10 0.012388464367608093 0.0

11 0.01519899123978988 0.0

13 0.0007920238885061248 0.0

19 0.0012656367468159102 0.0

21 0.009460545997473379 0.0

23 0.024176791871681664 0.0

… … …

2. Merge sets by certain fields

 A B

1 =file("p1.txt").import@t() /Import the first sampling file p1

2 =file("p2.txt").import@t() /Import the second sampling file p2

3 =A1.sort(ID) /Sort p1 by ID

4 =A2.sort(ID) /Sort p2 by ID

5
=[A3,A4].merge@x(ID) /merge@x() performs an order-based merge by ID

and return as sequence of records with different IDs

6 =A5.len() /Count the different IDs

The SPL script uses A.merge @x(xi, …) function to return a new table sequence

by removing common members of A(i)…:

Member

458

A6

3. Merge sets by the primary key

There are a series of same-structure body temperature files named after dates,

such as 601.txt for June 1. Task: Find the students who have a fever for at

least 3 days consecutively.

StudentID Name Fever

10 Ryan 0

5 Ashley 0

13 Daniel 1

19 Samantha 0

1 Rebecca 0

… … …

3. Merge sets by the primary key

 A B

1 =to(601, 620) /Create a sequence of file names

2 =A1.(file(string(~)+".txt").import@t()) /Import files from June 1 to June 20

3
=A2.(~.keys(StudentID).sort(StudentID)) /Set StudentID as the primary key and sort the files

by the key

4
=A3.merge() /merge() compares the primary key values to

perform the order-based merge

5
=A4.group@o(StudentID,Fever) /group@o() creates a new group whenever the key

value changes

6
=A5.select(~.Fever==1 && ~.len()>=3).id(Name) /Get students who have had a fever for at least 3

days consecutively

The SPL script uses A.merge() function to perform an order-based merge by the

primary key as long as the primary key is set for A(i):

Name

Ashley

Rachel

A6

4. Merge sets by all fields

There are two same-structure files p1.csv and p2.csv. Task: Count the different

records between them.

ID Predicted_Y Original_Y

10 0.012388464367608093 0.0

11 0.01519899123978988 0.0

13 0.0007920238885061248 0.0

19 0.0012656367468159102 0.0

21 0.009460545997473379 0.0

23 0.024176791871681664 0.0

… … …

4. Merge sets by all fields

 A B

1 =file("p1.txt").import@t() /Import the first sampling file p1

2 =file("p2.txt").import@t() /Import the second sampling file p2

3
=[A1,A2].merge@x() /merge() compares all fields to perform the order-

based merge. @x option returns a sequence of
different IDs, that is, the records with different IDs

4 =A3.len() /Return the number of different records

SPL script uses A.merge() function to compare all fields to perform the order-based

merge when no primary key is set for A(i):

Member

458

A4

5. When records are not ordered by the key

Sales data is stored in two databases, the old in db1 and the new in db2.

Both have same structures. Task: Calculate the total sales in 2014.

OrderID Customer SellerId OrderDate Amount

10426 GALED 4 2014/01/27 338.2

10676 TORTU 2 2014/09/22 534.85

10390 ERNSH 6 2013/12/23 2275.2

10400 EASTC 1 2014/01/01 3063.0

10464 FURIB 4 2014/03/04 1848.0

… … … … …

5. . When records are not ordered by the key

 A B

1 =connect("db1").query("select * from Sales") /Query Sales table from db1

2 =connect("db2").query("select * from Sales") /Query Sales table from db2

3

=[A1,A2].merge@ou(OrderID) /merge() performs the order-based merge by OrderID. @o
option indicates that the records are not necessarily
ordered by OrderID; @u option removes records with
duplicate IDs

4 =A3.select(year(OrderDate)==2014) /Get records of 2014

5 =A4.sum(Amount) /Calculate the total sales in 2014

The SPL script uses A.merge @o(xi, …) function to perform the merge when A(i)

is not ordered by [xi,…]:

Member

723388.75

A5

Note：A.merge@o() works similarly to A.conj(). Yet it is more common to use the @o

option with @u/@i/@d/@x options, as this example shows.

Big data
operations

1. Concatenation of sets

2. Merge sets by column values

1. Concatenation of sets

Task: Find the record that having the largest sales amount in each month.

The Sales table is too large to be wholly loaded into the memory.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

1. Concatenation of sets

 A B

1
=connect("db").query("select * from Sales order

by OrderDate")
/Query Sales table in the database and sort it by
OrderDate

2
=A1.group(month(OrderDate)) /cs.group() groups records by comparing neighboring

months

3 =A2.(~.maxp(Amount)) /Find the record with the largest sales in each month

4
=A3.conj() /列Return the concatenation of records with the largest

sales in each month

5
=A4.fetch() /Fetch data from the cursor to get a relatively small result

set

The SPL script uses cs.group(x, …) to group records of the cursor by comparing

neigboring records and return the grouped cursor:

A5 OrderID Customer SellerId OrderDate Amount

10267 FRANK 4 2013/07/29 4031.0

10286 QUICK 8 2013/08/21 3016.0

… … … … …

1. Concatenation of sets

The sales records of 2014 and 2015 are stored in same-structure tables S2014

and S2015 respectively. Both are too big to be loaded into the memory at

once. Task: Find the customers whose order amounts rank top 3 in both years.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

1. Concatenation of sets

 A B

1 =connect("db") /Connect to the database

2 =A1. cursor("select * from S2014") /Get cursor of S2014 table

3 =A1. cursor("select * from S2015") /Get cursor of S2015 table

4 =[A2,A3].conjx() /CS.joinx() concatenates the two cursors together

5
=A4.groups(Customer; sum(Amount):Amount) /Group and summarize the concatenation result to sum

the sales amounts for each customer

6 =A5.top(-3;Amount) /

The SPL script uses CS.conjx() function to combine cursors vertically, which is the

concatenation of records in the cursors:

A6 Customer Amount

SAVEA 177478.89

QUICK 102764.99

ERNSH 94066.28

2. Merge sets by column values

The sales data is stored in old database db1 and new database db2. The two

database tables are of same structure and too large to be loaded into the memory

at a time. Task: Calculate the sales amount in each month of 2014.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

2. Merge sets by column values

 A B

1
=connect("db1").cursor("select * from Sales order by OrderDate") /Query Sales table in db1 and sort it by

OrderDate

2
=connect("db2").cursor("select * from Sales order by OrderDate") /Query Sales table in db2 and sort it by

OrderDate

3
=[A1,A2].mergex(OrderDate) /mergex() merges the two cursors by

OrderDate

4 =A3.select(year(OrderDate)==2014) /Get records of 2014

5
=A4.groups@o(month(OrderDate):Month; count(~):Count) /groups() groups and summarize sales

amount for each month. @o option creates a
new groups whenever the month changes

The SPL script uses CS.mergex(xi, …) function to merge sequences of records in

cursors:

Month Count

1 33

2 29

… …

A5

2. Merge sets by column values

With the same tables, assume that they have duplicate records. Task: Calculate

total order amount of each customer in 2014.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

2. Merge sets by column values

 A B

1
=connect("db1").cursor("select * from Sales order by OrderID") /Query Sales table in db1 and sort it by

OrderDate

2
=connect("db2").cursor("select * from Sales order by OrderID") /Query Sales table in db2 and sort it by

OrderDate

3
=[A1,A2].mergex@u(OrderID) /mergex@u() removes duplicate records while

merging the cursors by OrderID

4 =A3.select(year(OrderDate)==2014) /Get records of 2014

5
=A4.groups(Customer; sum(Amount):Amount) /groups() groups and summarize each

customer’s sales amount

CS.mergex(xi, …) can work with @u/@i/@d/@x options that work similarly to

options for A.merge(). Below is the SPL script:

Customer Amount

ANATR 1129.75

ANTON 6452.15

… …

A5

for
watching

