Query Sharded Databases

I Database Sharding

Database sharding usually follows certain rules in order to distribute data as evenly as possible in different databases.

Example: N MySQL databases, Database No. 1 stores 2013 sales data, Database No. 2 stores 2014 sales data,...
Database No. n stores sales data for year 2012+n, as follows:

CLIENT SELLERID AMOUNT ORDERDATE

FHYBR 17 120000 2013-12-28 15:28:05
HAMNAR 16 4512.0 2013-12-28 15
1910:0.0 2013-12-

5390.0 2013-12-

CLIENT SELLERID AMOUNT ORDERDATE
JOPO 9 392.0 2014-01-01 15:28:05
AYWYN 13 00.0 2014-01-04 15:28:05
PJIPE i 9400.0 2014-01-05 15:28:05

(=]

P
=

[=]
Ln

g
8:05
DMEDL 10 00.0 2014-01-07 15:28:05
HAMAR i 7252.0 2014-01-08 15:28:05

oa
[=]
n

SAVEA 8 11600.0 2014-01-09 15:28:05
77410 2014-01-12 15:28:05

10000 1 -N1-173 =R

Database No.1 (Year 2013) Database No.2 (Year 2014)
Sales Data Sales Data

[=.u]
=1
ol

2
W
2
:28:05
2
2

o
=}
n

Database No. n (Year 2012+n)
Sales Data

| where

Longitudinal connection of the filtered results of different sharded-database tables

Example: For sales data tables in n databases, query all order records with a single sales amount greater than 500.

CLIENT SELLERID AMOUNT ORDERDATE

I - CLIENT SELLERID AMOUNT ORDERDATE
FHYBR 9700.0 2015-04-05 15:28:05

I QUICK 97000 2013-11-04 15:28:05 SICH 25500.0 2013-12-27 15:28:05

Database No.1 (Year 2013)

Sales amount greater than 500 | E

FHYBR

| B

1
SAVEA

=1

[=]

=

w
—
[
[=Nr1
=1
=1
=

-01-06

Ln
=]
n

FHYBR

=
Ln
(=]
n

L3 L
=

Fd Bd B Fd A D Rd fd

L3

===
o mn
=
(¥ B
=
(ST
=T o=
(=]
[=]
[
Ln
(=]
i

[y
=T
L

=]
iy
W
=
Ln
[T R I T I r~.1
O o Do Do O oM

[FTE Y]
[=]
(=]
=
L
[
Ln
=
(]

[y
Ln

[
(=]
=]

-~ h @ k3 A choLn

=1 =1
3 Pd P Pd R R R [d
=
=
b
=
L
=
n

[T 5 T 5 T N TR T N = |
R T 5 R 4 I I |

==Y = R = = B « = I =]

=]
Ln

[

| Ln
[rt)

=Y =]

Lo
[
Ln
=]
(]

[=]

[=]

(=]

[=]

=

L

[

Ln

=]

Ln

[N
(]

= 1

&
g
=

w o
-
(=1
=]
(=]
3 Bd fd P P e P Fd D3 R R d B Rd fd fa

I._J
L

(=]
=
LA
[y
L3
LN
=
L

[
T i Ty =y

()

=]
=
w
=
Ln
T T o T T o T o o T T o T o T e T T
0O 00 00 00 00 00 D0 D000 00 D0 00 00 00 0O oa
(=]
N

CLIENT SELLERID
AYWYN

FJIPE

DMEDL

HAMAR

SAVEA

FJIPE

—
Ln
ta
=1
(=]
=1
=1
[
=
[
=3
[
B
Ln
(=]
n

[=]
i
[=]
=
o
=]
: BE
=)
-
(=]
n

=]
i
-
=
[T]
1,
=y
=1
[=]
=

-
=
. =
by B B ™ T ™
(=]
=1
[=]
[y
Ln
(=]
n

Database No.2 (Year 2014)
Sales amount greater than 500

= om

=1
L

0.0

2
2
2
02
2
2
2
)

-
[= - T
-
==
=
=]
Ln
(=]
n

[=]

Ln
(=
[= o
=1
=
Ln
(=]

Ln

2
0.0

=1
L

[y
(=]

-
I

=T -

=]

(=]
=
Ln
(=]
n

L=
(=]
[

=
a i
=
Ln
(=]
n

[T T R U T T S

(=T o8
=
=2
Ln

BTMMU

=}
(]

7 ;B omomm

=1
X

|
|
|
|
1
|
|
|
|
|

Longitudinal connection of the filtered results of sharded-database by program

| where

Longitudinal connection of the filtered results of different sharded-database tables

Example: For sales data tables in n databases, query all order records with a single sales amount greater than 500.

=n.(connect("mysql"+string(~)))

Sequence table =SQL="select * from sales where amount >500"
fork Al =A3.query@x(SQL)
=A3.conj()

C =n.(connect("mysql"+string(~)))
ursor

=SQL="select * from sales where amount >500"

fork Al =A3.cursor(SQL)
=A3.conjx()

| order by

Reordering the sorted results by a field in each sharded-database table

Example: For sales data tables of n databases, sort in descending order by order amount

CLIENT SELLERID AMOUNT ORDERDATE
HP
DILRT
QuUICK
J0OPO
BTMMLU
FHYER
ERMNEH
YZ
HAMNAR
FHYER

- PJIPE
BTMMLU
SICH
AYWYN
OQHHW
SAVEA

CLIENT SELLERID AMOUNT ORDERDATE
FHYBR
QuICK
¥z
FHYBR
SJCH
BTMMU
SAVEA

oh

0.0 2014-10-08 15
014-05-24 15:

=]
=
=]
(=]
L=}
=
ey
L
=)
n
=
Ln

o
==
=1
=1
L=}
=
=
L
=]
Ln
[
=y
|u
=]
i

Database No.1 (Year 2013)

L
[=§]
=1
[=1
=
(=]
]

Bd P Pd 3 R Pd Ped
H
o
[=1
=1
Pd Pd PBd I R Pd P

=]
=
Lid

]
n
Mo oA om

=]
Ln

L on

=]
i

sort in descending order by order amount

[
=]
(=1
[=]
(=1
[
L
(IR
=]
Ln

|

=1

Ln

[
=] ©h A 3 G oho LN

=1

L=}

=1

=

i

—

o}

on

Ln

==

n

[re]
=
(]

(=]
[
L
BIOR3 ORI ORI ORI ORI ORI
|omom el omm

=)
n

[=]
=
L
[
Lo
Ln
[l

=
=]
=
(=]
Ln

(=Y
o
=1
=1
=
=}
n

CLIENT SELLERID AMOUNT ORDERDATE
HF)14-10-08 15:
JOPO 114-12-15 15:
DILRT 114-05-24 1

[T - - T
=]
[= = -]

L
=
[=]
=1
[=]
[=]
i

=]
=]
Ln

mom m
=}
o

=]

=]

i

[
=y

Vo

[

L= =]

A

L= =

=

L1 LN

[

Ln

(=1

Ln

Database No.2 (Year 2014)

=
Ln
=]
i
[=]
(=]

[
o

R S
N
[=u]

=]

LN

Gl ota oA o
&

=
(]
[aT]
3 =

[=]
n

sort in descending order by order amount SRR
HANAR

ERMNSH
FJIPE

Ln
=}
n
[

=] h W D3
Ln

i
=}
n

[T T A T T I
n L

[T R I I ru |\-_1
=1
tn
=1
N

[}
L
[
Ln

momom

=]
L

d

Sort the sorted results of sharded-database by order
date again

(The result set of the sharded-database is orderly, and
the merging algorithm can be used to merge orderly,

- So as to improve the efficiency.)

| order by

Reordering the sorted results by a field in each sharded-database table

Example: For sales data tables of n databases, sort in descending order or ascending order by order amount

=n.(connect("mysql"+string(~)))

Ascending order =SQL="select * from sales order by amount"

fork Al =A3.query@x(SQL)
=A3.merge(score)

=n.(connect("mysqgl"+string(~)))
Descending order

=SQL="select * from sales order by amount desc"
fork Al =A3.query@x(SQL)
=A3.merge(-score)

| order by

Reordering the sorted results by a field in each sharded-database table

Example: For sales data tables of n databases, sort in ascending order by order amount

=n.(connect("mysqgl"+string(~)))
Sequence table

=SQL="select * from sales order by amount"

fork Al =A3.query@x(SQL)
=A3.merge(score)

When the data volume is large:

=n.(connect("mysqgl"+string(~)))
Cursor

=SQL="select * from sales order by amount"

fork [A1:B1] =A3.cursor(SQL)
=A3.mergex(score)

| imit Y offset X

Based on the sorted result, Fetch Y records after skipping X records.

Example: For sales data table of n databases, which is sorted in descending order by order amount, fetch 10 records after
skipping the first record.

CLIENT SELLERID AMOUNT ORDERDATE CLIENT SELLERID AMOUNT ORDERDATE
FHYBR 5 29700.0 2013 8:05 - HP &
Quick 6 29700.0 2013 B:05 DILRT 14 L
Database No.1 (Year 2013) ¥z g 7 07013 2-05 I] i I - .
. : FHYBR 2 29400.0 2013 8:05 3 -15 15:28:05 Sle
sort in descending order by order amount il - N - - IR | S — records
SICH 18 2 2013-05-29 15:28:05 BTMMU : 30 1onmls after
BTMMU 16 2 2013-11-13 15:28:05 | FHYER 5 03 152805 skipping
SAVEA 7 2 2013-03-23 205 ERMSH 4 -07 8105 he fi
2 - AL — . " o the first
| - 0615:25:05 | JRUSSeY
I 15 -12 15:28:05
CLIENT SELLERID AMOUNT ORDERDATE 2 805 l
HP 9800.0 2014-10-08 15:28:05 - | 14 05 15:28:05 ||

10RO
DILRT
BTMMU
HAMAR
ERMNSH
PJIPE

1]

014-12-15 15: BTMMU

=1
I._J
l._J
=

Database No.2 (Year 2014)

oo |
=)
n

=1

=
=]
=
]

SICH
AYWYN
QHHW
SAVEA

=1
[

h

t

[N RN
<]
=1
o

=
Ln

w

(=

=]
o]

sort in descending order by order amount

ook

=1
E =
B
(=]
-]
=1
o]
o
=l h 1 o on
=
o

[=]
=1
o

i
]

=1
iy
=9
[=1
I
BRI ORI ORI ORI ORI RS

Bd B3 fd P ru Iu IU
B m m

X
297
297
2
X
X
2

=1
tn

Based on the result after sharded-database
sorting + orderly merging, Fetch Y records
after skipping X records.

(We can fetch X+Y records from sharded-
database, butcan’t jump between sharded-
databases.)

| imit Y offset X

Based on the sorted result, Fetch Y records after skipping X records.

Example: For sales data table of n databases, which is sorted in descending order by order amount, fetch 10 records
after skipping the first record.

=n.(connect("mysql"+string(~)))

seduenceitable =SQL="select * from sales order by amount limit 11"
fork Al =A3.query@x(SQL)
=A3.merge(-amount).to(2,11)

When the data volume is large:

=n.(connect("'mysql"+string(~)))
Cursor =SQL="select * from sales order by amount desc limit 11"

fork Al =A3.cursor(SQL)
=A3.mergex(-amount) =A4.skip(1)
=A4.fetch(10)

| sum/count/avg/max/min

The aggregated results of the sharded-database tables need to be re-aggregated, but there are some points for
attention.

SUIM . Sub-database sum, after aggregation is still sum.

Ccou ﬂt . Sub-database count, sum is needed for aggregation.

avg . Sum and count need to be calculated separately before avg is calculated.

maX\min : Same as sum

| sum/count/avg/max/min

The aggregated results of the sharded-database tables need to be re-aggregated, but there are some points for
attention.

Example: For sales data table of n databases, calculate total sales, number of orders, min/max sales value and average
sales value.

=n.(connect("mysql"+string(~)))

=SQL= “select sum(amount) totalamount,count(amount) countamount,max(amount)
maxamount,min(amount) minamount from sales

fork Al =A3.cursor(SQL)
=A3.conjx().total(sum(totalamount), sum(countamount), max(maxamount), min(minamount))

=create(totalamount,countamount,avgamount,maxamount,minamount).insert(0,A4(1),A4(2),
If(A4(2)!=0,round(A4(1)/A4(2)),null),A4(3),A4(4))

| group by

The results of grouping aggregation of each sharded-database table can not be merged simply when they are
grouped and aggregated again.

Example: For sales data table of n sub-databases, group by salesperson ID, calculate sum of sales amount, max and min of
sales amount and number of orders.

zellerid tatalamownt, countamount maxamount, minamount,

SELLERIT TOTALAMOTNT COUNT AKMOTNT M AMOTNT MINAKMOTHT

<ELLERID COMMTAMOTNT Wi KAMOTNT MINAMOTNT

| group by

The results of grouping aggregation of each sharded-database table can not be merged simply when they are
grouped and aggregated again.

Example: For sales data table of n sharded-databases, group by salesperson ID, calculate sum of sales amount, max and
min of sales amount and number of orders.

The result is small for each sharded-database, and the result set of the re-aggregation will only be smaller, use +

=n.(connect("mysql"+string(~)))

=SQL="select sellerid, sum(amount) totalamount, count(amount) countamount,max(amount)
maxamount,min(amount) minamount from sales group by sellerid"

fork Al =A3.query@x(SQL)

=A3.conj().groups(sellerid;sum(totalamount):totalamount,sum(countamount):countamount,ma
X(maxamount):maxamount,min(minamount):minamount)

=A4.new(sellerid,totalamount,countamount,if(countamount==0,null,round(totalamount/counta
mount)):avgamount,maxamount,minamount)

| group by

The results of grouping aggregation of each sharded-database table can not be merged simply when they are

grouped and aggregated again.

Example: For sales data table of n sharded-databases, group by salesperson ID, calculate sum of sales amount, max and
min of sales amount and number of orders.

The result set is large for each sharded-database, and the result set of the re-aggregation is not large, use +

=n.(connect("mysql"+string(~)))

=SQL="select sellerid, sum(amount) totalamount, count(amount) countamount,max(amount)
maxamount,min(amount) minamount from sales group by sellerid"

fork Al =A3.cursor(SQL)

=A3.conjx().groups(sellerid;sum(totalamount):totalamount,sum(countamount):countamount,
max(maxamount):maxamount,min(minamount):minamount)

=A4.new(sellerid,totalamount,countamount,if(countamount==0,null,round(totalamount/counta
mount)):avgamount,maxamount,minamount)

| group by

The results of grouping aggregation of each sharded-database table can not be merged simply when they are

grouped and aggregated again.

Example: For sales data table of n sharded-databases, group by salesperson ID, calculate sum of sales amount, max and
min of sales amount and number of orders.

The result set is large for each sharded-database, and the result set of the re-aggregation is also large, use
+

=n.(connect("mysqgl"+string(~)))

=SQL="select sellerid, sum(amount) totalamount, count(amount) countamount,max(amount)
maxamount,min(amount) minamount from sales group by sellerid order by sellerid"

fork Al =A3.cursor(SQL)

=A3.mergex().groupx@o(sellerid;sum(totalamount):totalamount,sum(countamount):countamo
unt,max(maxamount):maxamount,min(minamount):minamount)

=A4.new(sellerid,totalamount,countamount,if(countamount==0,null,round(totalamount/counta
mount)):avgamount,maxamount,minamount)

| group by having

Each sharded-database table only groups and aggregates, and all results are filtered after grouping and aggregation is

completed completely.

Example: For sales data tables of n sharded-databases, group by month and salesperson ID, get data with average sales

less than 10,000.

ORDERMONTH

Database No.1 (Year 2013)
Group by montbh, sellerid, calculate total
amount of sales and total number of orders

ORDERMONTH
Database No.2 (Year 2014)
Group by month, sellerid, calculate total
amount of sales and total number of orders

SELLERID

SELLERID

TOTALAMOUNT

1
2
5
o

[0 [=9

5 Ba oh

[= I =S E |

¥
B
9

L
- 2

24800.0
10300.0

(=]
(=]

Fl:l
(=]

TOTALCOUNT

68220.0

2646.0

TOTALCOUNT

[

O R R

ORDERMONTH SELLERID AVGAMOUNT

P Sy Y
o ka

18
9

=

I R Tk |

When the amount of data is large, the results are
returned orderly according to the grouping
dimension in the sharded-database. The merging
algorithm can be used to merge the results of
different sharded-databases in an orderly way. The
results after merging are still orderly, and can
continue to be filtered after ordered grouping and
aggregation.

(Note that there should be no having in the
sharded-database)

| group by having

Each sharded-database table only groups and aggregates, and all results are filtered after grouping and aggregation
is completed completely.

Example: For sales data tables of n sharded-databases, group by month and salesperson ID, get data with average sales
less than 10,000.

Aggregate computation is done only after aggregation, and then filter is implemented using function select.

Il =n.(connect("mysql"+string(~)))

5 =SQL="select month(orderdate) ordermonth,sellerid,sum(amount) totalamount,count(amount) totalcount from sales group by
ordermonth,sellerid”

s fork Al =A3.query@x(SQL)

4 =A3.conj().groups(ordermonth,sellerid;sum(totalamount):totalamount,sum(totalcount):totalcount).new(ordermonth,sellerid, (totalamount/totalc
ount):avgamount).select(avgamount<10000)

For large amounts of data, cursor needs to be used (select function is also applicable to cursor)

8 =n.(connect("mysql"+string(~)))

5 =SQL="select month(orderdate) ordermonth,sellerid,sum(amount) totalamount,count(amount) totalcount from sales group by
ordermonth,sellerid order by ordermonth,sellerid"

SN fork Al =A3.cursor(SQL)

4 =A3.mergex(ordermonth,sellerid).groupx@o(ordermonth,sellerid;sum(totalamount):totalamount,sum(totalcount):totalcount).new(ordermont
h,sellerid,(totalamount/totalcount):avgamount).select(avgamount<10000)

| distinct

distinct x is equivalent to select x group by x, and the implementation method is same as group.

Each sharded-database table only does the de-duplication operation, and all the results do the union (de-
duplication), so it can not be merged simply.

Example: For sales data tables of n sharded-databases, get the ID of all salesmen who have transaction records with

customer number 'YZ'.

Database No.1 (Year 2013)
Get the ID of all salesmen who have transaction
records with customer number 'YZ' within the year.

Database No.2 (Year 2014)
Get the ID of all salesmen who have transaction

records with customer number 'YZ' within the year.

zellerid

SELLERIT

<ELLERID

Obviously, we need to get the union(deduplication) of the
results of each sharded-database, rather than merge simply.

| distinct

distinct x is equivalent to select x group by x, and the implementation method is same as group.
Each sharded-database table only does the de-duplication operation, and all the results do the union (de-

duplication), so it can not be merged simply.

Example: For sales data tables of n sharded-databases, get the ID of all salesmen who have transaction records with
customer number YZ'.

=n.(connect("mysql"+string(~)))

=SQL="select distinct sellerid from sales where client="YZ' order by sellerid"
fork Al =A3.query@x(SQL)
=A3.merge@u(sellerid)

=n.(connect("mysql"+string(~)))

=SQL="select distinct sellerid from sales where client="YZ' order by sellerid"
fork Al =A3.cursor(SQL)
=A3.mergex@u(sellerid)

| count(distinct)

Each sharded-database table only does the de-duplication operation, and all the results do the union and de-

duplication and then count.

Example: For sales data tables of n sharded-databases, count the number of salesmen with a single sales
amount greater than 29,000. T

zellerid
Database No.1 (Year 2013)

Select salesmen with a single sales
amount greater than 29,000

COMNTRESTILT

SELLERID

When the result set of de-duplication is large in
the sharded-database, it can be sorted
separately in each sharded-database, then
calculate the union by merging algorithm using
the ordered characteristic, and finally count.

Database No.2 (Year 2014)
Select salesmen with a single sales
amount greater than 29,000

| count(distinct)

Each sharded-database table only does the de-duplication operation, and all the results do the union and de-

duplication and then count.
Example: For sales data tables of n sharded-databases, count the number of salesmen with a single sales
amount greater than 29,000.

For small amount of data, we can use g and

=n.(connect("mysql" +string(~)))
=SQL="select distinct sellerid from sales where amount>29000 order by sellerid"

fork A1 =A3.query@x(SQL)

=A3.merge@u(sellerid).len()

For large amount of data with small result set, we can use , and

=n.(connect("mysql" +string(~)))
=SQL="select distinct sellerid from sales where amount>29000 order by sellerid”
fork A1 =A3.cursor(SQL)

=A3.mergex@u(sellerid).total(count(~))

| count(distinct) group by

count(distinct) group by needs to group(distinct) the content of “distinct” and “group by” .
Each sharded-database table only performs de-duplication operation, and all results do the union(deduplication)

and then count.

Example: For sales data tables of n sharded-databases , group by month, count the number of salesmen with a
single sales amount greater than 10,000.

ORDERMONTH SELLERID

QRDERMONTH COUNTID

Database No.1 (Year 2013)
Select records with single sales amount
greater than 10,000, deduplicate by
month and sellerid, and sort

1
1
1
1
1
1
1
1
1

ORDERMONTH SELLERID B

Database No.2 (Year 2014)
Select records with single sales amount
greater than 10,000, deduplicate by

month and sellerid, and sort When the result set of de-duplication is large in
the sharded-database, it can be sorted
separately in each sharded-database, then
calculate the union by merging algorithm using

the ordered characteristic, and finally count.

T T T

| count(distinct) group by

count(distinct) group by needs to group(distinct) the content of “distinct” and “group by” .
Each sharded-database table only performs de-duplication operation, and all results do the union(deduplication)
and then count.

Example: For sales data tables of n sharded-databases , group by month, count the number of salesmen with a
single sales amount greater than 10,000.

=n.(connect("mysqgl" +string(~)))

=SQL="select distinct month(orderdate) ordermonth,sellerid from sales where amount > 10000 order by ordermonth,sellerid"

fork A1 =A3.query@x(SQL)
=A3.merge@u(ordermonth,sellerid).groups@o(ordermonth;count(sellerid):countseller)

For large amount of data with small result set, we can use , and

s fork A1 =A3.cursor(SQL)
‘8 =A3.mergex@u(ordermonth,sellerid).groups@o(ordermonth;count(sellerid):countseller)

For large amount of data with large result set, we can use , and

S fork A1 =A3.cursor(SQL)
‘8 =A3.mergex@u(ordermonth,sellerid).groupx@o(ordermonth;count(sellerid):countseller)

I Queries with JOIN

Reasonable data distribution solution can make JOIN only be carried out in sharded-databases, and JOIN is no

longer processed in the aggregation stage.

For the solution of synchronous sharded-database, both FULL JOIN and LFET JOIN can be supported, but different
types of JOIN need different distribution modes.

Database No.1

Database No.2

I Same dimension table and main sub table

sid X Primarykey Product number sid

* Primary key Product number

producttime glevel
workshopnum

Same dimension table: The of table A is associated with the of table B. A and B are called the same dimension
table. The same dimension table is a one-to-one relationship, and the relationship between the same dimension table is equal.

orderid % Primary key orderid * Primary key
CUStomer S|d * Primary key

date productid

country price
num

Main sub table: The of Table A is associated with of Table B. A is called the main table and B is called
the sub table. The main sub table is a one-to-many relationship.

I Foreign key table (Dimension table)

Orderld % Primary key pld X Primary key
Sld * Primary key name

productid area

price

num

r

Some field of Table A are associated with the of Table B. The field associated with the primary key of table B in
table A is called the foreign key of A to B, and B is also called the foreign key table of A. The foreign key table is a many-to-
one relationship.

-

I Same dimension table and main sub table are synchronously sharded

After data is sharded, join can be processed in each sharded-database, and join need not be considered in the

aggregation stage.

Same dimension table Main sub table

databaseA

databaseA

synchronously
sharded

databaseB

databaseB

I Same dimension table

The same dimension tables synchronously sharded can be merged after being joined separately in each sharded-

database.
Example: In n sharded-databases, and product quality table are synchronously sharded. Group according to
, and count the number of products whose product quality grade is less than 3.
A B

=n.(connect("mysql"+string(~)))

=SQL="select t1.workshopnum workshopnum,count() It3count from product t1 join
on tl.sid= where <3 group by tl.workshopnum order by t1.workshopnum™

fork Al =A3.query@x(SQL)
=A3.merge(workshopnum).groups @o(workshopnum;sum(lt3count):lt3count)

=n.(connect("mysqgl"+string(~)))

=SQL="select t1.workshopnum workshopnum,count() It3count from product t1 join
on t1.sid= where <3 group by tl.workshopnum order by t1.workshopnum™

fork Al =A3.cursor(SQL)

=A3.mergex(workshopnum).groupx@o(workshopnum;sum(lt3count):lt3count)

I Main sub table

The main and sub table synchronously sharded can be merged after being joined separately in each sharded-database.

Example: In n sharded-databases, and order detalil table are synchronously sharded, group by and
product id, count the total number of products.

A B

=n.(connect("mysqgl"+string(~)))

=SQL="select t1.country country, productid,sum() totalnum from orderinfo t1 join
on tl.orderid= group by t1l.country, order by t1.country,

fork Al =A3.query@x(SQL)
=A3.merge(country,productid).groups @o(country,productid;sum(totalnum):totalnum)

For large amount of data, use cursor.

=n.(connect("mysgl"+string(~)))

=SQL="select t1.country country, productid,sum() totalnum from orderinfo t1 join
on tl.orderid= group by t1l.country, order by t1.country,

fork Al =A3.cursor(SQL)

=A3.mergex(country,productid).groupx@o(country,productid;sum(totalnum):totalnum)

I Foreign key dimension table is redundantly copied into each sharded-database

If the dimension table (right table) has the same copy in each sharded-database, then the (each
sharded-database has its own part) is joined after aggregation, which is the result that the and
the dimension table in each sharded-database are joined first and then aggregated. As shown in the picture:

Cross Jain

1
7
3
=
1
7
3
Fil

I Foreign key table (Dimension table)

Each sharded-database has the same complete foreign key table. Join can be done separately in each sharded-

database and then aggregate the result.

Example: In n sharded-databases, the is evenly distributed in each sharded-database, and the
product table is redundant in each sharded-database. Filter out all orders with product area east.
A B

=n.(connect("mysql"+string(~)))

=SQL="select * from orderdetail t1 join on t1.productid= where
fork Al =A3.query@x(SQL)
=A3.conj()

=n.(connect("mysgl"+string(~)))

=SQL="select * from orderdetail t1 join on tl.productid= where

fork Al =A3.cursor(SQL)
=A3.conjx()

I Sharded-databases with different structure(Heterogeneous Database)

The functions of different databases are not the same, and the sharded-database of heterogeneous databases needs
to execute corresponding SQL.

Example: For the same example of grouping aggregation and filtering, because MySQL and Oracle have different "month
fetching” function, they need to execute different SQL separately.

?Eigfig Meaning OraCIe MySQ L

Fetch

YEAR(d) year EXTRACT(YEAR FROM d) YEAR(d)

etch
MONTH() | ot | EXTRACT(MONTHFROMd) | MONTH(d)

MySQL: select ordermonth,sellerid,sum(amount) totalamount,count(amount)
totalcount from sales group by ,sellerid order by ordermonth,sellerid
Oracle: select ordermonth,sellerid,sum(amount)

totalamount,count(amount) totalcount from sales group by
,sellerid order by ordermonth,sellerid

I Sharded-databases with different structure(Heterogeneous Database)

The functions of different databases are not the same, and the sharded-database of heterogeneous databases needs
to execute corresponding SQL.

Example: For the same example of grouping aggregation and filtering, because MySQL and Oracle have different "month
fetching" function, they need to execute different SQL separately.

=[[connect@I("mysqgl"),"MYSQL"],[connect@I("oracle"),"ORACLE"]]

=SQL="select month(orderdate) ordermonth,sellerid,sum(amount)
totalamount,count(amount) totalcount from sales group by

month(orderdate),sellerid”
fork A1 =SQL.sqltranslate(A3(2))

=A3(1).query(B3)
=A3.conj()

I To be continued in the next chapter

» Providing SQL Interface to Outside
« Optimizing with multiple distinct

 Foreign key dimension table and fact table are divided into two
databases

Coming soon

