
Query Sharded Databases

Database Sharding

Database sharding usually follows certain rules in order to distribute data as evenly as possible in different databases.

Example： N MySQL databases, Database No. 1 stores 2013 sales data, Database No. 2 stores 2014 sales data,...
Database No. n stores sales data for year 2012+n, as follows:

Database No.1（Year 2013）
Sales Data

Database No.2（Year 2014）
Sales Data

……

Database No. n （Year 2012+n）
Sales Data

where
Longitudinal connection of the filtered results of different sharded-database tables

Example： For sales data tables in n databases, query all order records with a single sales amount greater than 500.

Database No.1（Year 2013）
Sales amount greater than 500

Database No.2（Year 2014）
Sales amount greater than 500

Longitudinal connection of the filtered results of sharded-database by program

……

where
Longitudinal connection of the filtered results of different sharded-database tables

Example： For sales data tables in n databases, query all order records with a single sales amount greater than 500.

When the data volume is large:

Sequence table

Cursor

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select * from sales where amount >500"

3 fork A1 =A3.query@x(SQL)

4 =A3.conj()

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select * from sales where amount >500"

3 fork A1 =A3.cursor(SQL)

4 =A3.conjx()

order by
Reordering the sorted results by a field in each sharded-database table

Example： For sales data tables of n databases, sort in descending order by order amount

Database No.1（Year 2013）

sort in descending order by order amount

Database No.2（Year 2014）

sort in descending order by order amount

Sort the sorted results of sharded-database by order

date again

 (The result set of the sharded-database is orderly, and

the merging algorithm can be used to merge orderly,

so as to improve the efficiency.)
……

order by
Reordering the sorted results by a field in each sharded-database table

Example： For sales data tables of n databases, sort in descending order or ascending order by order amount

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select * from sales order by amount"

3 fork A1 =A3.query@x(SQL)

4 =A3.merge(score)

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select * from sales order by amount desc"

3 fork A1 =A3.query@x(SQL)

4 =A3.merge(-score)

Ascending order

Descending order

order by
Reordering the sorted results by a field in each sharded-database table

Example： For sales data tables of n databases, sort in ascending order by order amount

Sequence table

Cursor

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select * from sales order by amount"

3 fork A1 =A3.query@x(SQL)

4 =A3.merge(score)

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select * from sales order by amount"

3 fork [A1:B1] =A3.cursor(SQL)

4 =A3.mergex(score)

When the data volume is large:

limit Y offset X
Based on the sorted result, Fetch Y records after skipping X records.

Example： For sales data table of n databases, which is sorted in descending order by order amount, fetch 10 records after
skipping the first record.

Database No.1（Year 2013）

sort in descending order by order amount

Database No.2（Year 2014）

sort in descending order by order amount

fetch 10
records
after
skipping
the first
record

Based on the result after sharded-database
sorting + orderly merging, Fetch Y records

after skipping X records.

（We can fetch X+Y records from sharded-

database，but can’t jump between sharded-

databases.）

……

limit Y offset X
Based on the sorted result, Fetch Y records after skipping X records.

Example： For sales data table of n databases, which is sorted in descending order by order amount, fetch 10 records
after skipping the first record.

Sequence table

Cursor

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select * from sales order by amount limit 11"

3 fork A1 =A3.query@x(SQL)

4 =A3.merge(-amount).to(2,11)

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select * from sales order by amount desc limit 11"

3 fork A1 =A3.cursor(SQL)

4 =A3.mergex(-amount) =A4.skip(1)

5 =A4.fetch(10)

When the data volume is large：

sum/count/avg/max/min
The aggregated results of the sharded-database tables need to be re-aggregated, but there are some points for

attention.

sum：Sub-database sum，after aggregation is still sum.

count：Sub-database count，sum is needed for aggregation.

avg：Sum and count need to be calculated separately before avg is calculated.

max\min：same as sum

sum/count/avg/max/min
The aggregated results of the sharded-database tables need to be re-aggregated, but there are some points for

attention.

Example： For sales data table of n databases, calculate total sales, number of orders, min/max sales value and average
sales value.

 A B

1 =n.(connect("mysql"+string(~)))

2
=SQL=“select sum(amount) totalamount,count(amount) countamount,max(amount)

maxamount,min(amount) minamount from sales

3 fork A1 =A3.cursor(SQL)

4 =A3.conjx().total(sum(totalamount), sum(countamount), max(maxamount), min(minamount))

5
=create(totalamount,countamount,avgamount,maxamount,minamount).insert(0,A4(1),A4(2),

if(A4(2)!=0,round(A4(1)/A4(2)),null),A4(3),A4(4))

group by
The results of grouping aggregation of each sharded-database table can not be merged simply when they are

grouped and aggregated again.

Example： For sales data table of n sub-databases, group by salesperson ID, calculate sum of sales amount, max and min of
sales amount and number of orders.

……

group by
The results of grouping aggregation of each sharded-database table can not be merged simply when they are

grouped and aggregated again.

Example： For sales data table of n sharded-databases, group by salesperson ID, calculate sum of sales amount, max and
min of sales amount and number of orders.

 A B

1 =n.(connect("mysql"+string(~)))

2
=SQL="select sellerid, sum(amount) totalamount, count(amount) countamount,max(amount)

maxamount,min(amount) minamount from sales group by sellerid"

3 fork A1 =A3.query@x(SQL)

4
=A3.conj().groups(sellerid;sum(totalamount):totalamount,sum(countamount):countamount,ma

x(maxamount):maxamount,min(minamount):minamount)

5
=A4.new(sellerid,totalamount,countamount,if(countamount==0,null,round(totalamount/counta

mount)):avgamount,maxamount,minamount)

The result is small for each sharded-database, and the result set of the re-aggregation will only be smaller, use query +
groups.

group by
The results of grouping aggregation of each sharded-database table can not be merged simply when they are

grouped and aggregated again.

Example： For sales data table of n sharded-databases, group by salesperson ID, calculate sum of sales amount, max and
min of sales amount and number of orders.

 A B

1 =n.(connect("mysql"+string(~)))

2
=SQL="select sellerid, sum(amount) totalamount, count(amount) countamount,max(amount)

maxamount,min(amount) minamount from sales group by sellerid"

3 fork A1 =A3.cursor(SQL)

4
=A3.conjx().groups(sellerid;sum(totalamount):totalamount,sum(countamount):countamount,

max(maxamount):maxamount,min(minamount):minamount)

5
=A4.new(sellerid,totalamount,countamount,if(countamount==0,null,round(totalamount/counta

mount)):avgamount,maxamount,minamount)

The result set is large for each sharded-database, and the result set of the re-aggregation is not large, use cursor+groups.

group by

Example： For sales data table of n sharded-databases, group by salesperson ID, calculate sum of sales amount, max and
min of sales amount and number of orders.

 A B

1 =n.(connect("mysql"+string(~)))

2
=SQL="select sellerid, sum(amount) totalamount, count(amount) countamount,max(amount)

maxamount,min(amount) minamount from sales group by sellerid order by sellerid"

3 fork A1 =A3.cursor(SQL)

4
=A3.mergex().groupx@o(sellerid;sum(totalamount):totalamount,sum(countamount):countamo

unt,max(maxamount):maxamount,min(minamount):minamount)

5
=A4.new(sellerid,totalamount,countamount,if(countamount==0,null,round(totalamount/counta

mount)):avgamount,maxamount,minamount)

The result set is large for each sharded-database, and the result set of the re-aggregation is also large, use
cursor+groupx.

The results of grouping aggregation of each sharded-database table can not be merged simply when they are

grouped and aggregated again.

group by having
Each sharded-database table only groups and aggregates, and all results are filtered after grouping and aggregation is

completed completely.

Example： For sales data tables of n sharded-databases, group by month and salesperson ID, get data with average sales
less than 10,000.

Database No.1（Year 2013）
Group by month, sellerid, calculate total

amount of sales and total number of orders

When the amount of data is large, the results are

returned orderly according to the grouping

dimension in the sharded-database. The merging

algorithm can be used to merge the results of

different sharded-databases in an orderly way. The

results after merging are still orderly, and can

continue to be filtered after ordered grouping and

aggregation.

(Note that there should be no having in the

sharded-database)

Database No.2（Year 2014）
Group by month, sellerid, calculate total

amount of sales and total number of orders

……

group by having
Each sharded-database table only groups and aggregates, and all results are filtered after grouping and aggregation

is completed completely.

Example： For sales data tables of n sharded-databases, group by month and salesperson ID, get data with average sales
less than 10,000.

 A B

1 =n.(connect("mysql"+string(~)))

2
=SQL="select month(orderdate) ordermonth,sellerid,sum(amount) totalamount,count(amount) totalcount from sales group by

ordermonth,sellerid"

3 fork A1 =A3.query@x(SQL)

4
=A3.conj().groups(ordermonth,sellerid;sum(totalamount):totalamount,sum(totalcount):totalcount).new(ordermonth,sellerid,(totalamount/totalc

ount):avgamount).select(avgamount<10000)

Aggregate computation is done only after aggregation, and then filter is implemented using function select.

For large amounts of data, cursor needs to be used (select function is also applicable to cursor)

 A B

1 =n.(connect("mysql"+string(~)))

2
=SQL="select month(orderdate) ordermonth,sellerid,sum(amount) totalamount,count(amount) totalcount from sales group by

ordermonth,sellerid order by ordermonth,sellerid"

3 fork A1 =A3.cursor(SQL)

4
=A3.mergex(ordermonth,sellerid).groupx@o(ordermonth,sellerid;sum(totalamount):totalamount,sum(totalcount):totalcount).new(ordermont

h,sellerid,(totalamount/totalcount):avgamount).select(avgamount<10000)

distinct
distinct x is equivalent to select x group by x，and the implementation method is same as group.

Each sharded-database table only does the de-duplication operation, and all the results do the union (de-

duplication), so it can not be merged simply.

Example： For sales data tables of n sharded-databases， get the ID of all salesmen who have transaction records with
customer number `YZ'.

Database No.1（Year 2013）
Get the ID of all salesmen who have transaction

records with customer number `YZ’ within the year.

Obviously, we need to get the union(deduplication) of the

results of each sharded-database, rather than merge simply.

……

Database No.2（Year 2014）
Get the ID of all salesmen who have transaction

records with customer number `YZ’ within the year.

distinct

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select distinct sellerid from sales where client='YZ' order by sellerid"

3 fork A1 =A3.query@x(SQL)

4 =A3.merge@u(sellerid)

For large amounts of data, we can use cursor, mergex@u

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select distinct sellerid from sales where client='YZ' order by sellerid"

3 fork A1 =A3.cursor(SQL)

4 =A3.mergex@u(sellerid)

distinct x is equivalent to select x group by x，and the implementation method is same as group.

Each sharded-database table only does the de-duplication operation, and all the results do the union (de-

duplication), so it can not be merged simply.

Example： For sales data tables of n sharded-databases， get the ID of all salesmen who have transaction records with
customer number `YZ'.

count(distinct)
Each sharded-database table only does the de-duplication operation, and all the results do the union and de-

duplication and then count.

Example： For sales data tables of n sharded-databases，count the number of salesmen with a single sales
amount greater than 29,000.

Database No.1（Year 2013）
Select salesmen with a single sales

amount greater than 29,000

Database No.2（Year 2014）
Select salesmen with a single sales

amount greater than 29,000

When the result set of de-duplication is large in

the sharded-database, it can be sorted

separately in each sharded-database, then

calculate the union by merging algorithm using

the ordered characteristic, and finally count.

……

count(distinct)
Each sharded-database table only does the de-duplication operation, and all the results do the union and de-

duplication and then count.

Example： For sales data tables of n sharded-databases，count the number of salesmen with a single sales
amount greater than 29,000.

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select distinct sellerid from sales where amount>29000 order by sellerid"

3 fork A1 =A3.query@x(SQL)

4 =A3.merge@u(sellerid).len()

For small amount of data，we can use query, merge@u and len

For large amount of data with small result set， we can use cursor, mergex@u and total

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select distinct sellerid from sales where amount>29000 order by sellerid"

3 fork A1 =A3.cursor(SQL)

4 =A3.mergex@u(sellerid).total(count(~))

count(distinct) group by
count(distinct) group by needs to group(distinct) the content of “distinct” and “group by”.

Each sharded-database table only performs de-duplication operation, and all results do the union(deduplication)

and then count.

Example： For sales data tables of n sharded-databases ，group by month，count the number of salesmen with a
single sales amount greater than 10,000.

Database No.1（Year 2013）
Select records with single sales amount

greater than 10,000, deduplicate by
month and sellerid, and sort

Database No.2（Year 2014）
Select records with single sales amount

greater than 10,000, deduplicate by
month and sellerid, and sort When the result set of de-duplication is large in

the sharded-database, it can be sorted

separately in each sharded-database, then

calculate the union by merging algorithm using

the ordered characteristic, and finally count.

……

count(distinct) group by

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select distinct month(orderdate) ordermonth,sellerid from sales where amount > 10000 order by ordermonth,sellerid"

3 fork A1 =A3.query@x(SQL)

4 =A3.merge@u(ordermonth,sellerid).groups@o(ordermonth;count(sellerid):countseller)

For large amount of data with small result set， we can use cursor, mergex@u and groups@o

For large amount of data with large result set， we can use cursor, mergex@u and groupx@o

 A B

3 fork A1 =A3.cursor(SQL)

4 =A3.mergex@u(ordermonth,sellerid).groups@o(ordermonth;count(sellerid):countseller)

 A B

3 fork A1 =A3.cursor(SQL)

4 =A3.mergex@u(ordermonth,sellerid).groupx@o(ordermonth;count(sellerid):countseller)

count(distinct) group by needs to group(distinct) the content of “distinct” and “group by”.

Each sharded-database table only performs de-duplication operation, and all results do the union(deduplication)

and then count.

Example： For sales data tables of n sharded-databases ，group by month，count the number of salesmen with a
single sales amount greater than 10,000.

Queries with JOIN

Reasonable data distribution solution can make JOIN only be carried out in sharded-databases, and JOIN is no

longer processed in the aggregation stage.

For the solution of synchronous sharded-database, both FULL JOIN and LFET JOIN can be supported, but different
types of JOIN need different distribution modes.

……

Database No.1

Database No.2

tableA tableB

tableA tableB

tableA*tableB

Same dimension table and main sub table

product table

sid Product number

producttime

workshopnum

… …

quality table

sid Product number

qlevel

… …

★ Primary key
★ Primary key

1 : 1

Same dimension table: The primary key of table A is associated with the primary key of table B. A and B are called the same dimension

table. The same dimension table is a one-to-one relationship, and the relationship between the same dimension table is equal.

orderinfo (Main table)

orderid

customer

date

country

… …

orderdetail （Sub table）

orderid

sid

productid

price

num

… …

★ Primary key

★ Primary key

★ Primary key

1 : N

Main sub table: The primary key of Table A is associated with part of the primary keys of Table B. A is called the main table and B is called

the sub table. The main sub table is a one-to-many relationship.

Foreign key table（Dimension table）

product

pid

name

area

… …

Some field of Table A are associated with the primary key of Table B. The field associated with the primary key of table B in

table A is called the foreign key of A to B, and B is also called the foreign key table of A. The foreign key table is a many-to-

one relationship.

★ Primary key

orderdetail

orderid

sid

productid

price

num

★ Primary key

★ Primary key

Same dimension table and main sub table are synchronously sharded

Product Quality 1

Product Quality 1

databaseA

databaseB

Order Order detail n

Order Order detail n

databaseA

databaseB

Same dimension table Main sub table

synchronously

sharded

After data is sharded, join can be processed in each sharded-database, and join need not be considered in the

aggregation stage.

Same dimension table

The same dimension tables synchronously sharded can be merged after being joined separately in each sharded-

database.

Example： In n sharded-databases, product table and product quality table are synchronously sharded. Group according to
workshop number, and count the number of products whose product quality grade is less than 3.

 A B

1 =n.(connect("mysql"+string(~)))

2
=SQL="select t1.workshopnum workshopnum,count(t2.qlevel) lt3count from product t1 join quality t2

on t1.sid=t2.sid where t2.qlevel<3 group by t1.workshopnum order by t1.workshopnum"

3 fork A1 =A3.query@x(SQL)

4 =A3.merge(workshopnum).groups@o(workshopnum;sum(lt3count):lt3count)

For large amount of data，use cursor.

 A B

1 =n.(connect("mysql"+string(~)))

2
=SQL="select t1.workshopnum workshopnum,count(t2.qlevel) lt3count from product t1 join quality t2

on t1.sid=t2.sid where t2.qlevel<3 group by t1.workshopnum order by t1.workshopnum"

3 fork A1 =A3.cursor(SQL)

4 =A3.mergex(workshopnum).groupx@o(workshopnum;sum(lt3count):lt3count)

Main sub table

The main and sub table synchronously sharded can be merged after being joined separately in each sharded-database.

Example： In n sharded-databases, order table and order detail table are synchronously sharded, group by country and
product id, count the total number of products.

 A B

1 =n.(connect("mysql"+string(~)))

2
=SQL="select t1.country country,t2.productid productid,sum(t2.num) totalnum from orderinfo t1 join

orderdetail t2 on t1.orderid=t2.orderid group by t1.country,t2.productid order by t1.country,t2.productid"

3 fork A1 =A3.query@x(SQL)

4 =A3.merge(country,productid).groups@o(country,productid;sum(totalnum):totalnum)

For large amount of data，use cursor.

 A B

1 =n.(connect("mysql"+string(~)))

2
=SQL="select t1.country country,t2.productid productid,sum(t2.num) totalnum from orderinfo t1 join

orderdetail t2 on t1.orderid=t2.orderid group by t1.country,t2.productid order by t1.country,t2.productid"

3 fork A1 =A3.cursor(SQL)

4 =A3.mergex(country,productid).groupx@o(country,productid;sum(totalnum):totalnum)

If the dimension table (right table) has the same copy in each sharded-database, then the fact table (left table) (each
sharded-database has its own part) is joined after aggregation, which is equivalent to the result that the fact table and
the dimension table in each sharded-database are joined first and then aggregated. As shown in the picture:

Foreign key dimension table is redundantly copied into each sharded-database

Foreign key table（Dimension table）

Each sharded-database has the same complete foreign key table. Join can be done separately in each sharded-

database and then aggregate the result.

Example： In n sharded-databases, the order detail table is evenly distributed in each sharded-database, and the
product table is redundant in each sharded-database. Filter out all orders with product area east.

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select * from orderdetail t1 join product t2 on t1.productid=t2.pid where t2.area='east'"

3 fork A1 =A3.query@x(SQL)

4 =A3.conj()

For large amount of data，use cursor.

 A B

1 =n.(connect("mysql"+string(~)))

2 =SQL="select * from orderdetail t1 join product t2 on t1.productid=t2.pid where t2.area='east'"

3 fork A1 =A3.cursor(SQL)

4 =A3.conjx()

Sharded-databases with different structure(Heterogeneous Database)

The functions of different databases are not the same, and the sharded-database of heterogeneous databases needs

to execute corresponding SQL.

Example： For the same example of grouping aggregation and filtering, because MySQL and Oracle have different "month
fetching" function, they need to execute different SQL separately.

MySQL: select month(orderdate) ordermonth,sellerid,sum(amount) totalamount,count(amount)

totalcount from sales group by month(orderdate),sellerid order by ordermonth,sellerid

Standard
function Meaning Oracle MySQL

YEAR(d)
Fetch
year EXTRACT(YEAR FROM d) YEAR(d)

MONTH(d)
Fetch
month EXTRACT(MONTH FROM d) MONTH(d)

Oracle: select extract (month from orderdate) ordermonth,sellerid,sum(amount)

totalamount,count(amount) totalcount from sales group by extract (month from

orderdate),sellerid order by ordermonth,sellerid

Sharded-databases with different structure(Heterogeneous Database)

The functions of different databases are not the same, and the sharded-database of heterogeneous databases needs

to execute corresponding SQL.

Example： For the same example of grouping aggregation and filtering, because MySQL and Oracle have different "month
fetching" function, they need to execute different SQL separately.

 A B

1 =[[connect@l("mysql"),"MYSQL"],[connect@l("oracle"),"ORACLE"]]

2

=SQL="select month(orderdate) ordermonth,sellerid,sum(amount)
totalamount,count(amount) totalcount from sales group by
month(orderdate),sellerid"

3 fork A1 =SQL.sqltranslate(A3(2))

4 =A3(1).query(B3)

5 =A3.conj()

To be continued in the next chapter

• Providing SQL Interface to Outside

• Optimizing with multiple distinct

• Foreign key dimension table and fact table are divided into two
databases

• …

Coming soon

