
- JOINS

目录
CONTENTS

01 Objectified foreign key 02 Normal joins

03 Position-based joins

1. Transform foreign key values to records

in referenced table

2. Retain nonmatched records only

1. Using hashing algorithm

2. Using order-based merge

3. Foreign key joins

4. Cross product

5. A join with bin file

1. Location by sequence numbers

2. Location by value positions

3. Location by field positions

04 A join with sequence

1. Left join

2. Degenerate to cross product

3. Complicated joins

Objectified foreign

key
1. Transform foreign key values to

records in referenced table

2. Retain nonmatched records only

1. Transform foreign key values to
records in referenced table

Query task: Find American employees under a Chinese manager according to

Employee table and Department table.

Employee

ID

Name

Nation

Dept

Department

ID

Name

Manager

1. Transform foreign key values to
records in referenced table

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Employee") /Query Employee table

3 =A1.query("select * from Department") /Query Department table

4 =A3.switch(Manager, A2:ID)
/switch function transforms Department.Manager into
referenced records in Employee table

5 =A2.switch(Dept, A4:ID)
/switch function transforms Employee.Dept into
referenced records in Department table

6
=A5.select(Nation=="American" &&
Dept.Manager.Nation=="Chinese")

/Get American employees whose managers are Chinese

In SPL script below, A.switch() function transforms foreign key values into

corresponding records in the referenced table:

A6 ID Name Nation Dept

11 Simon American 2

103 Rudy American 2

… … … …

1. Transform foreign key values to
records in referenced table

Query task: Calculate the total income for each employee (certain posts

have allowances) according to Employee table and PostAllowance table.

Employee

ID

Name

Salary

Post

PostAllowance

Post

Allowance

1. Transform foreign key values to
records in referenced table

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Employee") /Query Employee table

3 =A1.query("select * from PostAllowance") /Query PostAllowance table

4 =A2.switch(Post, A3:Post)

/switch function transforms Employee.Post into
referenced records in PostAllowance table; posts
that haven’t allowances are set nulls

5 =A4.new(ID,Name,Salary+Post.Allowance:Salary)
/Create a new table sequence and calculate salary
for each employee

In SPL script below, A.switch() function transforms foreign key values into

corresponding records in the referenced table; unmatched values will be set null:

A5 ID Name Salary

1 Rebecca 8000

2 Ashley 12000

… … …

1. Transform foreign key values to
records in referenced table

Query task: Calculate orders amount of each customer in Beijing in

2014 and sort result in descending order according to Sales table and

Customer table.

Sales

ID

CustomerID

Date

Amount

Customer

ID

Name

City

…

1. Transform foreign key values to
records in referenced table

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Sales where year(Date)=2014") /Query records of the year 2014 from Sales table

3 =A1.query("select * from Customer where City='Beijing'")
/Query records where City is Beijing from
Customer table

4 =A2.switch@i(CustomerID, A3:ID)
/@i option retains only records where customers
come from Beijing

5
=A4.groups(CustomerID.Name:Name;
sum(Amount):Amount).sort@z(Amount)

/Group records to calculate each customer’s
amount and sort result in descending order

In SPL script below, A.switch () function uses @i option to delete records from the

referenced table where the foreign key values don’t have matching values in the

referencing table:

A5 Name Amount

SAVEA 130672.64

HUN 23959.05

… …

2. Retain nonmatched records only

Query task: Find new customers in 2014, which are those whose CustomerIDs

are not included in Customer table according to Sales table and Customer table.

Customer

ID

Name

City

…

Sales

ID

CustomerID

OrderDate

…

2. Retain nonmatched records only

 A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Sales where
year(OrderDate)=2014")

/Get records of the year 2014 from Sales table

3 =A1.query("select * from Customer") /Query Customer table

4 =A2.switch@d(CustomerID ,A3:ID)
/@d option selects records from Sales table whose CustomerIDs
don’t exist in Customer table

In SPL script below, A.switch() function works with @d option to retain only the

nonmatched records; in this case the nonmatched foreign key values won’t be set

nulls:

ID CustomerID OrderDate …

10439 MEREP 2014/02/07 …

10504 WHITC 2014/04/11 …

… … … …

A4

Normal joins

1. Using hashing algorithm

2. Using order-based merge

3. Foreign key joins

4. Cross product

5. A join with bin file

1. Using hashing algorithm

Query task: Calculate the number of students who select

“Matlab” course according to Course table and SelectCourse

table.

Course

ID

Class

Subject

Score

SelectCourse

ID

Class

Name

1. Using hashing algorithm

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Course") /Query Course table

3 =A1.query("select * from SelectCourse") /Query SelectCourse table

4 =A2.select(Name=="Matlab") /Select the record with specified course

5 =A3.join@i(ID,A4:ID).count()
/Perform a filtering join using @i and calculate the
number

In SPL script below, A.join() function uses @i option to delete unmatched records

from the right table:

Value

5

A5

1. Using hashing algorithm

Query task: Find the total score of subjects for each student

in class one according to Score table and Student table.

Score

ID

Subject

Score

Student

ID

Class

Name

1. Using hashing algorithm

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Score") /Query Score table

3 =A1.query("select * from Student") /Query Student table

4 =A2.join@i(ID:"Class one", A3:ID:Class)
/Perform filtering join by Student table’s ID and Class
using @i option

5 =A4.groups(ID; sum(Score):TotalScore) /Group records to calculate each student’s total score

In SPL script below, we also use @i option to delete unmatched records. “Class one”

is a constant condition by which the filtering join is performed.

ID TotalScore

1 230

2 258

3 228

… …

A5

1. Using hashing algorithm

Query task: Find orders that payment hasn’t done, that is, those where

the paid amount is less than the payable amount, according to Detail table,

Order table, and Payment table.

Order

ID

CustomerID

EmployeeID

Date

Payment

ID

Date

Amount

…

Detail

ID

ProductID

Amount

…

1. Using hashing algorithm

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Order") /Query Order table

3 =A1.query("select * from Detail") /Query Detail table

4 =A1.query("select * from Payment") /Query Payment table

5 =A3.group(ID) /Group Detail table by ID

6 =A4.group(ID) /Group Payment table by ID

7 =join(A2:Order,ID; A5:Detail,ID; A6:Payment,ID) /join() function relates the three tables by order IDs

8
=A7.new(Order.ID:ID,Detail.sum(Amount):Amount,
Payment.sum(Amount):Pay)

/Create a new table sequence to get order amount and
paid amount for each order

9 =A8.select(Pay<Amount)
/Select records where the paid amount is less than the
order amount

In SPL script below, join() function is used to do the join:

ID Amount Pay

AROUT 55492.0 35980

BERGS 3398.55 1080

… … …

A9

2. Using order-based merge

Query task: Find the sales for each customer in the year 2014

according to Order table and Detail table.

Order

ID

CustomerID

EmployeeID

Date

Detail

ID

ProductID

Amount

2. Using order-based merge

 A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Order where
year(Date)=2014 order by ID")

/Select records of 2014 from Order table and sort them
by ID

3 =A1.query("select * from Detail order by ID") /Query Detail table and sort it by ID

4 =join@m(A2:Order,ID;A3:Detail,ID) /join@m function merges the two tables by ordered ID

5
=A4.groups(Order.CustomerID:CustomerID;
sum(Detail.Amount):Amount)

/Group records to sum each customer’s sales amount

In SPL script below, join() function uses @m option to perform an order-based merge:

CustomerID Amount

ALFKI 14848.0

ANTON 4041.0

… …

A5

2. Using order-based merge

Query task: Find customers whose order amount is greater than ten thousand. As

both Order table and Detail table can’t be wholly loaded into the memory, we

need to read them first as cursors and then perform order-based cursor merge.

Order

ID

CustomerID

EmployeeID

Date

Detail

ID

ProductID

Amount

Customer

ID

Name

City

…

2. Using order-based merge

 A B

1 =connect("db") /Connect to database

2 =A1.cursor("select * from Order order by ID") /Read Order table as a cursor ordered by ID

3 =A1.cursor("select * from Detail order by ID") /Read Detail table as a cursor ordered by ID

4 =A1.query("select * from Customer") /Query Customer table

5 =A2.switch@i(CustomerID,A4:ID)
/switch@i function replaces Order.CustomerID with
referenced records in Customer table and delete
unmatched records

6 =joinx(A5:Order,ID;A3:Detail,ID)
/joinx function merges Order table and Detail table by
ordered ID

7
=A6.groups(Order.CustomerID.Name;
sum(Detail.Amount):Amount).select(Amount>10000)

/Group records and calculate each customer’s order
amount and select those where the amount is greater
than 10,000

In SPL script below, we use joinx() function to do the order-based merge between

cursors:

Name Amount

ALFKI 14848.0

AROUT 55492.0

… …

A7

3. Foreign key joins

Query task: Find products for which money is paid and the total order amount is

greater than 500 in 2014 according to Product table, Detail table and Payment table.

Product

ID

Name

Desc

Category

Detail

ID

Number

ProductID

Amount

Payment

ID

OrderID

OrderNumber

Date

Amount

3. Foreign key joins

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Detail") /Query Detail table

3 =A1.query("select * from Payment") /Query Payment table

4 =A1.query("select * from Product") /Query Product table

5 =A2.switch@i(ProductID,A4:ID)
/switch@i function transfers Detail.ProductID to
referenced records in Product table

6 =A3.join(OrderID:OrderNumber,A5:ID:Number,~:Detail) /A.join function relates Detail table and Payment table

7 =A6.select(year(Date)==2014 && Detail.Amount>500) /Select desired records

8
=A7.new(ID,Date,Detail.Product.Name:Name,Detail.Amo
unt:Amount)

/Create a new table sequence based on the selected
records

In SPL script below, we use A.join() function to perform a foreign key join with multi-

primary-key:

ID Date Name Amount

10979 2014/03/26 Soda water 1317

11011 2014/04/09 Espresso 530

… … … …

A8

3. Foreign key joins

Query task: Find each student’s evaluation according to

Student table and Evaluation table (There is a base score of 70).

Evaluation

ID

StudentID

Score

…

Student

ID

Name

Class

…

3. Foreign key joins

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Student") /Query Student table

3 =A1.query("select * from Evaluation") /Query Evaluation table

4 =A3.group(StudentID) /Group Evaluation table by StudentID

5 =join@1(A2:Student,ID;A4:Evaluation,StudentID)
/join@1 function left joins Student table with grouped
Evaluation table

6
=A5.new(Students.ID:ID,Student.Name:Name,70+
Evaluation.sum(Score):Score)

/Create a new table sequence to calculate each student’s
total score, which is adding the evaluation score to the
base score

In SPL script below, join() function works with @1 option to join the two tables

according to the left table’s structure:

ID Name Score

1 Ashley 85

2 Rachel 65

3 Emily 70

… … …

A6

3. Foreign key joins

Query task: Compare each product’s monthly sales amount in 2014

according to Sales table and Product table.

Product

ID

Name

Desc

…

Sales

ID

CustomerID

ProductID

Date

3. Foreign key joins

 A B

1 =connect("db") /Connect to database

2
=A1.query("select ProductID, month(Date) as Month from Sales
where year(Date)=2014")

/product sales records of 2014 from Sales table

3 =A1.query("select * from Product") /Query Product table

4 =A2.switch(ProductID ,A3:ID)
/switch function replaces Sales.ProductID with
referenced records in Product table

5 =A4.group(Month) /Group and sorts Sales table by Month

6
=A5.(~.group@1(ProductID).new(ProductID.Name:Product,
count(~):Count))

/Group the grouped Sales table by removing
duplicate products in each month and retain a
product name field

7 =A6.("A6("+string(#)+"):"+string(#)+",Product").concat(";") /Piece up parameter strings for join@f() funtion

8 =join@f(${A7}) /join@f() performs a full join

In SPL script below, join() function uses @f option to perform a full join:

A8

1 2 3 4 5 6 7 8 9 10 11 12

(null) [Cheese,3] (null) (null) (null) (null) (null) (null) (null) [Cheese,6] (null) (null)

(null) [Coffee,7] (null) [Coffee,6] [Coffee,9] (null) [Coffee,9] (null) (null) (null) (null) [Coffee,8]

[Milk,3] (null) [Milk,5] [Milk,7] (null) [Milk,6] [Milk,8] [Milk,3] (null) [Milk,6] [Milk,4] (null)

… … … … … … … … … … … …

4. Cross product

Query task: Find sandwiches having the most common ingredients

according to Sandwich table and Ingredient table.

ID Name Price

1 BLT 5.5

2 Reuben 7.0

3 Grilled Cheese 3.75

Sandwich

ID Ingredient

1 bacon

1 lettuce

1 tomato

… …

Ingredient

4. Cross product

 A B

1 =connect("db") /Connect to database

2
=A1.query("select i.ID ID, i.Ingredient Ingredient, s.Name Name
from Sandwich s, Ingredient i where s.ID=i.ID order by ID")

/Query records from both the two tables

3 =A2.group@o(ID;Name,~.(Ingredient):Collection)
/group@o() performs merger grouping by ID and
store all ingredients in Collection field

4 =xjoin(A3:A;A3:B,A.ID<ID)
/xjoin function calculates cross product on A3’s
result and select sandwich couples of different IDs

5
=A4.new((A.Collection ^ B.Collection).len():Count,
A.Name:Name1, B.Name:Name2).sort@z(Count)

/Find the number of common ingredients and
sort records by duplicate count in descending
order

In SPL script below, we use xjoin() function to calculate cross product. Each record in the

result set is calculated from records in two tables, rather than piecing together all field

values.

Count Name1 Name2

1 Reuben Grilled Cheese

0 BLT Reuben

0 BLT Grilled Cheese

A5

4. Cross product

Query task: Below is the data structure of a cross product table, which

is the result of multiplying two matrices.

Matrix

row

col

value

4. Cross product

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from MatrixA") /Query MatrixA

3 =A1.query("select * from MatrixB") /Query MatrixB

4 =xjoin(A2:A; A3:B, A2.col==A3.row)
/xjoin function calculates the two tables’ cross
product while filtering the result set by a
condition

5 =A4.groups(A.row:row,B.col:col;sum(A.value * B.value):value)
/Group records and calculate every (row,column)
value

In the SPL script below, xjoin() function calculates cross product while performing a

conditional filtering:

row col value

1 1 14

1 2 32

2 1 32

2 2 77

A5

4. Cross product

Query task: Get age groups among residents living in the

community according to Community table and Age table.

ID Name Age

1 David 28

2 Daniel 15

3 Andrew 65

4 Rudy

Community

Group Start End

Children 0 15

Youth 16 40

Middle 41 60

Old 61 100

Age

4. Cross product

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Community") /Query Community table

3 =A1.query("select * from Age") /Query Age table

4
=xjoin@1(A2:Person; A3:Age, A3.Start<=Person.Age &&
A3.End>=Person.Age)

/xjoin@1() performs left join to get the cross
product and selects records for each age group

5
=A4.new(Person.﻿ID:ID, Person.Name:Name,
Person.Age:Age,Age.Group:Group)

/Create a new table sequence to return the age
group for each resident

In SPL script below, xjoin()@1 function performs a left join to calculate the cross

product：

ID Name Age Group

1 David 28 Youth

2 Daniel 15 Children

3 Andrew 65 Old

4 Rudy (null) (null)

A5

5. Joining files

Query task: Get how many pieces each product is sold in Jan., 2014. according

to Order table, Detail table and Product table, which is a bin file ordered by ID.

Order

ID

CustomerID

EmployeeID

Date

Detail

ID

ProductID

Amount

Product

ID

Name

Category

…

5. Joining files

 A B

1 =file("Detail.ctx").create().cursor() /Create cursor for Detail table

2
=file("Order.ctx").create().cursor(;year(Date)==2014 &&
month(Date)==1)

/Create cursor for Order records of Jan., 2014

3 =file("Product.btx") /Create a bin file object for Product table

4 =A1.joinx@i(ID,A2:ID) /cs.joinx@i function performs a filtering join

5 =A4.joinx(ProductID,A3:ID,Name:ProductName)
/cs.joinx function joins Detail table and Product
table by product’s ID

6 =A5.groups(ProductName; count(~):Count)
/Group records and count the numbers each
product is sold

In SPL script below, we use cs.joinx() function to join the three files. The bin file must

be ordered by the join field.

ProductName Count

Milk 32

Coffee 60

… …

A6

5. Joining files

Query task: Find customers who rank top 3 in 2014in terms of order

amount according to Sales table and Customer table, which are bin files

ordered by ID.

Customer

ID

Name

City

…

Sales

ID

CustomerID

OrderDate

Amount

…

5. Joining files

 A B

1 =file("Sales.btx").cursor@b().select(year(Date)==2014)
/Select Sales records of 2014 from the bin file
and create cursor on them

2 =file("Customer.btx")
/Create a bin file object on Customer table that
is ordered by customers’ IDs

3 =A1.groups(CustomerID;sum(Amount):Amount)
/Group Sales records and calculate each
customer’s order amount

4 =A3.top(-3;Amount) /Get top 3 customers in terms of order amount

5 =A4.joinx@q(CustomerID,A2:ID,Name:CustomerName).fetch()
/cs.joinx function joins Sales table and Customer
table by customers’IDs; @q option is used to
increase speed

In SPL script below, we use cs.joinx() function to join with a segmentable bin file. @q

function is used to speed up the computation as the bin file contain a relatively small

volume of data.

CustomerID Amount CustomerName

71 130672.64 SAVEA

63 64238.0 QUICK

20 53467.38 ERNSH

A5

5. Joining files

Query task: Get the refund for each product in 2015 according to

Order table, Returns table and Product table.

Order

ID

CustomerID

Amount

…

Returns

OrderID

ProductID

Date

…

Product

ID

Name

Category

…

5. Joining files

 A B

1 =file("Returns.btx").cursor@b().select(year(Date)==2015) /Create cursor on Returns table

2 =file("Order.btx") /Create bin file object on Order table

3 =file("Product.btx") /Create bin file object on Product table

4
=A1.joinx@qc(OrderID,A2:ID,Amount;ProductID,A3:ID,Cate
gory)

/cs.joinx function joins Returns table with Order
table by OrderID and with Product table
By ProductID. Here @qc are used to speed up
computation

5 =A4.groups(Category; sum(Amount))
/Group records by product and calculate the
refund amount

In SPL script below, we use cs.joinx() function to join the files. Can use @c option to

make computation faster if a cursor is ordered by the first join field. @c option can

work with @q option：

Category Amount

Electric appliance 1854.5

Fruits 251.5

… …

A5

Position-based
Joins

1. Location by sequence numbers

2. Location by value positions

3. Location by field positions

1. Location by sequence numbers

Query task: Find products under categories containing “drink” according
to Product table and Category table:

Product

ID

Name

CategoryID

…

Category

ID

Name

Description

…

1. Location by sequence numbers

 A B

1 =connect("demo") /Connect to data source

2 =A1.query("select * from Product") /Query Product table

3 =A1.query("select * from Category") /Query Category table

4 =A3.select(like@c(Name, "*drink*"))
/Select records under categories whose name containing
“drink”; case-insensitive

5 =A2.join@i(CategoryID,A4:#1)
/Perform filtering join through Product.CategoryID and the first
field (ID) in Category table

In SPL script below, A.join() function uses sequence-number-based location method,

represented by symbol # to perform the join. #1 means the first field.

ID Name CategoryID

24 Soda 1

34 Beer 1

35 Orange Juice 1

… … …

A5

2. Location by value positions

Query task: Shuffle values of a certain column in a database table and

write new values back. Below is REF_VALUES table:

ID ORIGINAL_VALUE SHUFFLED_VALUE

1 D N

2 U n

3 j K

4 N D

… … …

2. Location by value positions

 A B

1 =connect("demo") /Connect to database

2 =A1.query("select ID,ORIGINAL_VALUE from REF_VALUES") /Query REF_VALUES table

3 =A2.sort(rand())
/Sort selected fields randomly to rearrange
values

4 =join@p(A2.(ID);A3.(ORIGINAL_VALUE))
/join@p joins the original IDs and the
shuffled values by positions

5
=A1.update@u(A4, REF_VALUES, ID:_1, SHUFFLED_VALUE:_2;
ID)

/Update shuffled values to database table
REF_VALUES by primary key ID

In SPL script below, join() function @p option to perform a join according to positions:

2. Location by value positions

Query task: Find orders in 2014 that don’t use installment loan and calculate

average evaluation of each product category. Order table, Payment table and

Evaluation table have same order ID values. Relationships between involved

tables are as follows:

Order

ID

CustomerID

ProductID

Date

Payment

ID

Channel

Instalments

Date

Evaluation

ID

Score

Date

Comment

Product

ID

Name

Category

2. Location by value positions

 A B

1 =connect("demo") /Connect to database

2 =A1.query("select * from Order order by ID") /Query Order table

3 =A1.query("select * from Payment order by ID") /Query Payment table

4 =A1.query("select * from Evaluation order by ID") /Query Evaluation table

5 =A1.query("select * from Product") /Query Product table

6 =A2.switch(ProductID, A5:ID)
/switch function converts Order.ProductID
into referenced records in Product table

7 =join@p(A6:Order;A3:Payment;A4:Evaluation)
/join@p function joins the three specified
tables by positions

8
=A7.select(year(Order.Date)==2014 &&
!Payment.Installments)

/Select orders in 2014 not using installment

9
=A8.groups(Order.ProductID.Category;
avg(Evaluation.Score):Score)

/Group and calculate average evaluation
score for each category

In the SPL script below, join() function uses @p option to perform a join by positions:

Category Score

Electric appliance 3.98

Fruits 3.86

… …

A9

3. Location by field positions

The table records populations of cities around the world:

List European and African cities having more than 2 million population
and the numbers in two column groups, with each group ordered by
population in descending order. The expected result:

Continent Country City Population

Africa Egypt Cairo 6789479

Asia China Shanghai 24240000

Europe Britain London 7285000

Europe City Population Africa City Population

Moscow 8389200 Cairo 6789479

London 7285000 Kinshasa 5064000

St Petersburg 4694000 Alexandria 3328196

3. Location by field positions

In SPL script below, A.paste() function relates Europe records to original Africa records with
field names omitted and add values to the new table sequence by the order of fields

 A B

1
=connect("db").query("select * from World where Continent

in('Europe', 'Africa') and Population >= 2000000")

/Connect to database to get population
records of European and African cities having
more than 2 million population

2 =A1.select(Continent:"Europe")
/select() function gets records of European
cities

3 =A1.select(Continent:"Africa") /select() function gets records of African cities

4
=A2.new(City:'Europe City',Population:'Europe Population','Africa

City','Africa Population')
/Create a new table sequence based on
European data

5 =A4.paste(A3.(City):#3,A3.(Population):#4;1)

/paste() function relates A4’s Europe records
to A3’s original African records by field
records to get desired value sequences to fill
into the 3rd column and 4th column

Europe City Population Africa City Population

Moscow 8389200 Cairo 6789479

London 7285000 Kinshasa 5064000

St Petersburg 4694000 Alexandria 3328196

… … … …

A5

A join with
sequence

1. Left join

2. Degenerate to cross product

3. Complicated joins

1. Left join

Query task: Calculate the ratio of each terminal type used by students in a primary

school during online learning. Below is the directory holding questionnaire files of

all classes:

ID STUDENT_NAME TERMINAL

1 Rebecca Moore Phone

2 Ashley Wilson Phone,PC,Pad

3 Rachel Johnson Phone,PC,Pad

4 Emily Smith Phone,Pad

5 Ashley Smith Phone,PC

6 Matthew Johnson Phone

7 Alexis Smith Phone,PC

8 Megan Wilson Phone,PC,Pad

… … …

1. Left join

 A B
1 =directory@ps("D:/Primary School") /Traverse the directory iteratively to list all files
2 for A1 =file(A2).xlsimport@t() /Load into the questionnaire Excel files iteratively

3 =@+=B2.len()
/Calculate the total rows, which is the total number
of students

4
=B2.news(B2.TERMINAL.split@c(
); ID, STUDENT_NAME,
~:TERMINAL)

/news function relates questionnaire files to split
terminal names

5
=B4.groups(TERMINAL;
count(~):Count)|@

/Group and count the number of each terminal and
add the result to this cell if B4’s union result
exceeds the memory space,

6
=B5.groups(TERMINAL;string(sum(Count)/B3,
"#.##%"):PERCENTAGE)

/Group and summarize the aggregate result of each
class

In SPL script below, A.news() function relates the table sequence to the sequence of split terminal

names.

A6 TERMINAL PERCENTAGE

PC 70%

Pad 56.67%

Phone 93.33%

1. Left join

Query task: Find the most frequently used labels for each author according to

PostRecord table.

ID TITLE Author Label

1 Easy analysis of Excel Ashley Excel,ETL,Import,Export

2 Early commute: Easy to pivot excel Rachel Excel,Pivot,Python

3 Initial experience of SPL Rebecca

4 Talking about set and reference Emily Set,Reference,Dispersed,SQL

5 Early commute: Better weapon than Python Emily Python,Contrast,Install

… … … …

1. Left join

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from PostRecord") /Query PostRecord table

3 =A2.news@1(A2.Label.split@c(); ID,Title,Author,~:Label)
/A.news@1 function left joins the
sequence of labels and retain the post
records even it hasn’t a label

4 =A3.groups(Author,Label;count(~):Count)
/Group and count labels used by every
author

5 =A4.group(Author).conj(~.maxp@a(Count))
/Group by authors to get the most
frequently used labels and retain both if
there is a tie

In SPL script below, A.news() function uses @1 option to do a left join:

A5 Author Label Count

Rebecca (null) 1

Ashley Excel 3

Ashley SPL 3

Rachel Python 4

… … …

2. Degenerate cross product

Query task: Find the available teachers for each course according to the

Teachers file and Courses file.

Teacher Branch Courses

Petitti Matematica 28,33,30,35

Canales Apesca 11,16,12,17,13,18,14,19

Lucero NavegacionI 6,11,16,21,7,12,17,22,…

Bergamaschi TecPesc 1,26,2,27,3,28,4,29,5,30

… … …

ID Name

1 lua

2 maa

3 mia

4 jua

… …

Teachers Courses

2. Degenerate to cross product

 A B

1
=file("Teachers.txt").import@t().run(Courses=Courses.s
plit@cp())

/Import Teachers table and split Courses field into a
sequence

2 =file("Courses.txt").import@t() /Import Courses table

3 =A2.news(A1;ID,Name:Course,Teacher,Courses)
/A.news calculates cross product of Teachers table
and Courses table

4 =A3.select(Courses.contain(ID))
/Select records where the course ID is included in the
sequence of courses

5
=A4.group(Course).new(Course,~.(Teacher).concat@c():
Teachers)

/Group by course, create the sequence of available
teachers and concatenate them by commas to form
the Teachers field

In SPL script below, A.news() function calculates cross product of a table and a sequence:

A5 Course Teachers

jua Bergamaschi,Puebla,Jimenez

jub Lucero,Mazza,Puebla,Chiatti,Jimenez,Luceroo

juc Canales,Lucero,Mazza,Puebla,Chiatti,Luceroo

… …

3. Complicated joins

Query task: A company has the policy that salespeople whose single

order amount is greater than 1000 will be given a 5% performance

award . Then, what is the actual sale amount of each salesperson?

Order

ID

CustomerID

EmployeeID

Date

Detail

ID

ProductID

Amount

Discount

Employee

ID

Name

Dept

…

3. Complicated joins

 A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Order where year(Date)=2014") /Query records of 2014 from Order table

3 =A1.query("select * from Detail") /Query Detail table

4 =A1.query("select * from Employee") /Query Employee table

5 =A2.switch(EmployeeID,A4:ID)
/switch function replaces Order.EmployeID with
referenced records in Employee table

6 =A3.group(ID) /Group Detail table by ID

7
=A6.news(A2.select(ID:A6.~.ID);
EmployeeID,(s=sum(Amount*(1-Discount)), if(s>1000, s*1.05,
s)):Amount)

/news function joins Detail table with Order table by ID
and calculate the actual amount of each order

8 =A7.groups(EmployeeID.Name:Name; sum(Amount):Amount) /Group and sum the total sales for each employee

In SPL script below, A.news() function performs the join and the specified calculation:

Name Amount

Alexis 358882.02

Emily 432435.85

… …

A8

for your
attention

