

## 数据挖掘

Titanic幸存者预测



#### 目录 CONTENTS

01

02

03

04

数据介绍

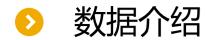
探索和预处理

建模与评价

模型应用



## 数据介绍





Titanic生还者预测是kaggle上的经典赛题,本节以此数据介绍数据挖掘过程

(面向对象是小白,大神请绕过)

"titanic\_train.csv" :

训练集(有目标变量)共有891条记录,12个变量

"titanic\_test.csv" :

待测集 (无目标变量) 共有418条记录, 11个变量

#### 分析目标:

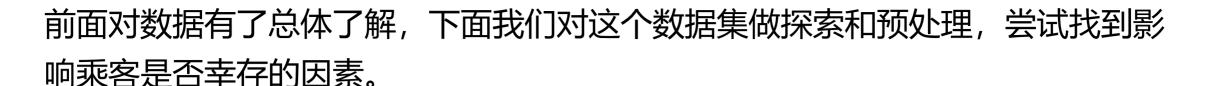
- 1.寻找影响乘客幸存与否的因素
- 2.根据训练集构建模型对待测集数据进行预测

| 序号 | 变量          | 描述信息        |
|----|-------------|-------------|
| 1  | PassengerId | 乘客编号        |
| 2  | Survived    | 是否幸存        |
| 3  | Pclass      | 船票等级        |
| 4  | Name        | 乘客姓名        |
| 5  | Sex         | 乘客性别        |
| 6  | Age         | 乘客年龄        |
| 7  | SibSp       | 乘客兄弟姐妹、配偶数量 |
| 8  | Parch       | 乘客父母孩、子数量   |
| 9  | Ticket      | 船票号码        |
| 10 | Fare        | 船票价格        |
| 11 | Cabin       | 船舱          |
| 12 | Embarked    | 登船港口        |

#### 数据字典



## 探索和预处理

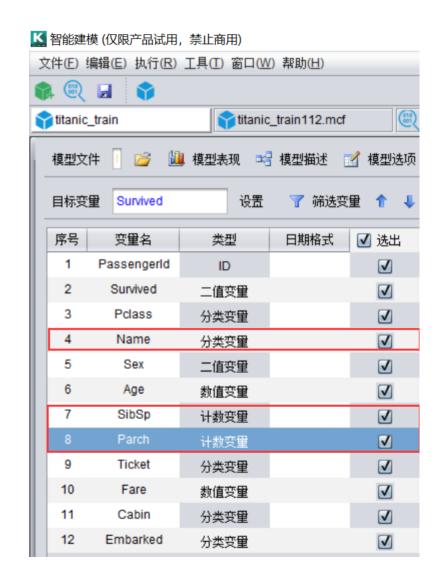




◆ 数据探索

#### 1. 根据数据字典检验变量类型

右图是易明智能建模工具自动识别的变量类型,其中Name被识别为ID,是因为它没有重复值,和Passengerld一样被认为是每条记录的唯一标识了,但我们需要从Name中提取一些信息所以将其改为分类变量。SibSp和Parch表示家庭成员数,但被识别成了分类变量,因此将其改成计数变量。



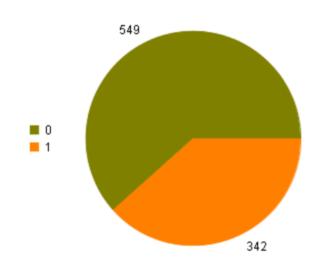
#### ● 数据探索 - 分布分析



#### 2. 目标变量Survived

是否幸存, 共有两个类别1和0, 其中1表示幸存, 0表示遇难。没有缺失值, 是本次建模的目标变量。

| <b>  併图</b> |   |
|-------------|---|
| 缺失率         | 势 |
| 0%          | 2 |



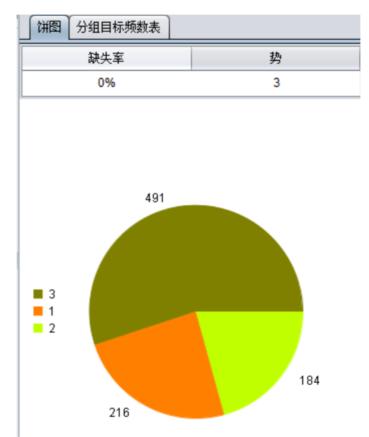




#### 3. Pclass

船票等级,共有三个类别,分别是1、2、3,其中1、2等级人数少,3等级人数多,无缺失值。

按目标变量分组后,查看幸存率,可以发现船票等级越高,幸存率越高。(还是要努力挣钱啊!)



| ( ) 分组目标频数表 |     |      |         |  |  |  |
|-------------|-----|------|---------|--|--|--|
| 分类变量        | 样本里 | 正样本数 | 正样本率    |  |  |  |
| 1           | 216 | 136  | 62.963% |  |  |  |
| 2           | 184 | 87   | 47.283% |  |  |  |
| 3           | 491 | 119  | 24.236% |  |  |  |



#### 3. Name

姓名,发现其中包含一些信息,比如人的称呼(mr, miss等),将其提取出来看看有没有用。



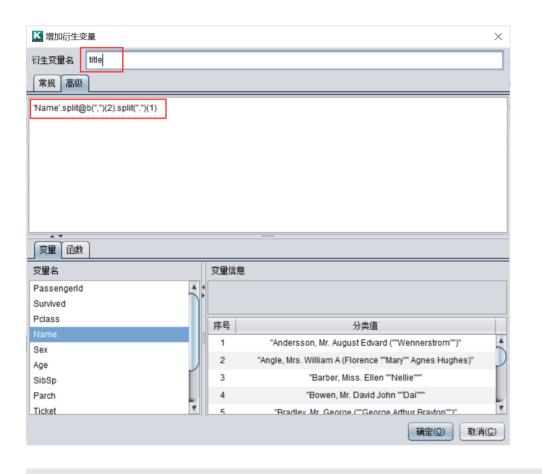
| Name                                                    |
|---------------------------------------------------------|
| Braund, Mr. Owen Harris                                 |
| Cumings, Mrs. John Bradley (Florence Briggs Thayer)     |
| Heikkinen, Miss. Laina                                  |
| Futrelle, Mrs. Jacques Heath (Lily May Peel)            |
| Allen, Mr. William Henry                                |
| Moran, Mr. James                                        |
| McCarthy, Mr. Timothy J                                 |
| Palsson, Master. Gosta Leonard                          |
| Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)       |
| Nasser, Mrs. Nicholas (Adele Achem)                     |
| Sandstrom, Miss. Marguerite Rut                         |
| Bonnell, Miss. Elizabeth                                |
| Saundercock, Mr. William Henry                          |
| Andersson, Mr. Anders Johan                             |
| Vestrom, Miss. Hulda Amanda Adolfina                    |
| Hewlett, Mrs. (Mary D Kingcome)                         |
| Rice, Master. Eugene                                    |
| Williams, Mr. Charles Eugene                            |
| Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele) |
|                                                         |

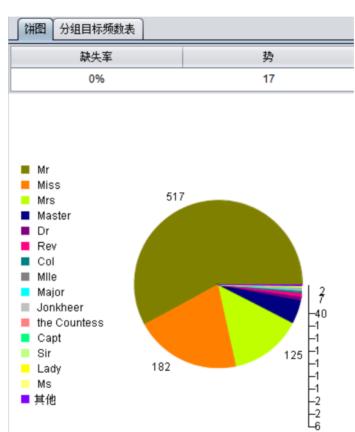


#### 数据预处理 - 生成衍生变量



#### 使用变量Name生成变量title





| 分类变量     | 样本里 | 正样本数 | 正样本率       |  |  |  |
|----------|-----|------|------------|--|--|--|
| Capt     | 1   | 0    | 0%         |  |  |  |
| Col      | 2   | 1    | 50%        |  |  |  |
| Don      | 1   | 0    | 0%         |  |  |  |
| Dr       | 7   | 3    | 42.857%    |  |  |  |
| Jonkheer | 1   | 0    | 0%         |  |  |  |
| Lady     | 1   | 1    | 100%       |  |  |  |
| Major    | 2   | 1    | 50%        |  |  |  |
| Master   | 40  | 23   | 57.5%      |  |  |  |
| Miss     | 182 | 127  | 69.78%     |  |  |  |
| Mile     | 2   | 2    | 100%       |  |  |  |
| Mme      | 1   | 1    | 100%       |  |  |  |
| Mr       | 517 | 81   | 15.667%    |  |  |  |
| Mrs      | 125 | 99   | 79.2%      |  |  |  |
| Ms       | 1   | 1    | 100%       |  |  |  |
| INIO     |     |      |            |  |  |  |
| Rev      | 6   | 0    | 0%         |  |  |  |
|          | 6   | 0    | 0%<br>100% |  |  |  |

从其中提取出姓名的称呼,查看分组后的统计信息,发下Miss,Mrs,Master幸存率很高,但Mr的幸存率很低,说明这个变量是有用的。

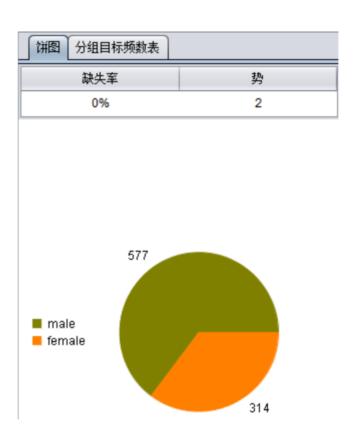




#### 4. Sex

性别,共有两个类别男性和女性,其中男性占大多数。无缺失值

分组后发现女性幸存率远远高于男性。 说明这个变量非常重要。



| 饼图 分组目标 | 频数表 |      |         |
|---------|-----|------|---------|
| 分类变量    | 样本里 | 正样本数 | 正样本率    |
| female  | 314 | 233  | 74.204% |
| male    | 577 | 109  | 18.891% |



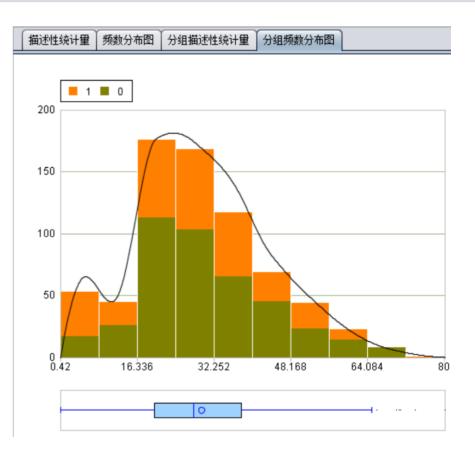


年龄,年龄最小的只有0.42,最大的有80。缺失率是19.865%。智能建模工具会自动进行缺失值填补,不需要处理。

从分组频数分布图看,8岁以下的儿童幸存概率非常大,56岁以上的中老年人幸存概率非常小,青壮年幸存概率变化不大。据此可以将其分为三组,即0~8岁,9~56岁,57岁以上,生成衍生变量Age\_g



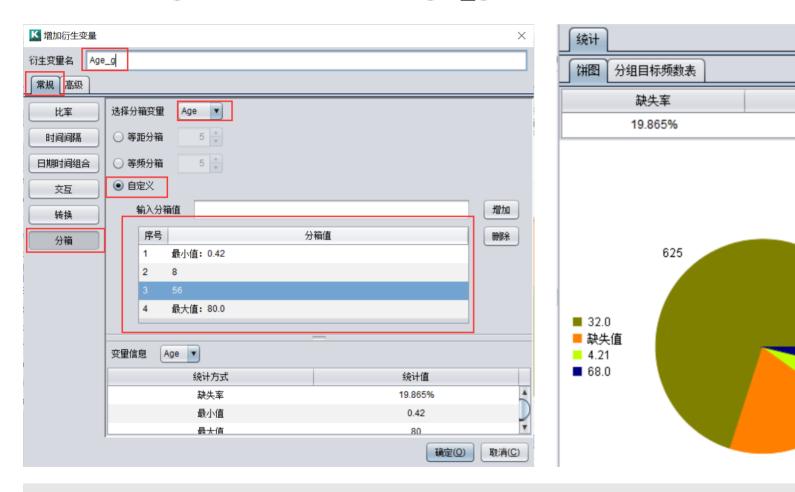
| 描述性统    | 计量 频 | 数分布图 | 分组描述性  | 统计里   | 分组频数分 | 布图    |        |       |
|---------|------|------|--------|-------|-------|-------|--------|-------|
| 缺失率     | 最小值  | 最大值  | 平均值    | 上1/4点 | 中位数   | 下1/4点 | 标准差    | 偏度    |
| 19.865% | 0.42 | 80.0 | 29.699 | 38.0  | 28.0  | 20.0  | 14.526 | 0.388 |







#### 使用变量Age生成衍生变量Age\_g





势

35

54

177

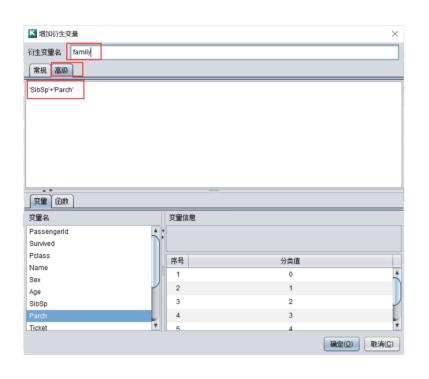
衍生变量Age\_g缺失率继承了Age的缺失率,智能建模工具会进行智能补缺,不需要单独处理。查看下分组统计的结果,儿童幸存率高,中老年幸存率低,青壮年幸存率处于两者之间,是个重要变量。

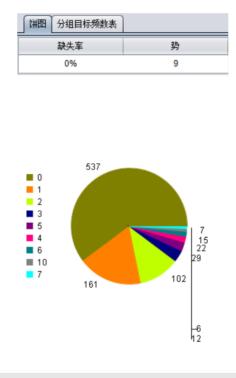




#### 6. 使用SibSp、Parch生成衍生变量family

兄弟姐妹配偶数量、父母子女数量,无缺失值,都是家庭成员,把这两个变量相加组成family变量。





| ( ) 分组目标频数表 |     |      |         |  |  |  |
|-------------|-----|------|---------|--|--|--|
| 分类变量        | 样本里 | 正样本数 | 正样本率    |  |  |  |
| 0           | 537 | 163  | 30.354% |  |  |  |
| 1           | 161 | 89   | 55.28%  |  |  |  |
| 2           | 102 | 59   | 57.843% |  |  |  |
| 3           | 29  | 21   | 72.414% |  |  |  |
| 4           | 15  | 3    | 20%     |  |  |  |
| 5           | 22  | 3    | 13.636% |  |  |  |
| 6           | 12  | 4    | 33.333% |  |  |  |
| 7           | 6   | 0    | 0%      |  |  |  |
| 10          | 7   | 0    | 0%      |  |  |  |

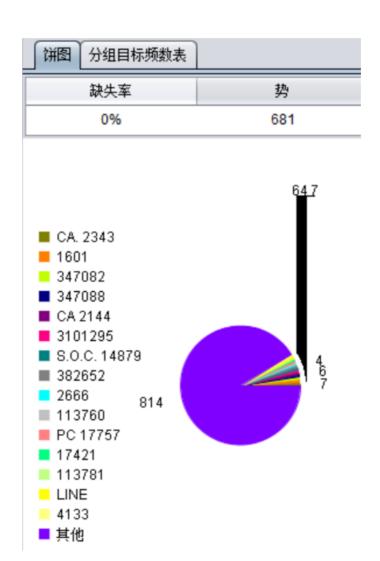
观察生成的衍生变量family,单身的人占大多数,但幸存率只有30.354%,家庭成员数量在1~3人时,亲情会帮助自己得救,但大于3人时,亲人又会相互牵挂,导致幸存率下降,该变量也是重要变量。





#### 7. Ticket

船票号,分类数过多,查看饼图和分组统计情况,并不能提供过多的信息,可以将此变量舍弃。



| 分类变量   | 样本里 | 正样本 | 正样本率    |  |  |  |
|--------|-----|-----|---------|--|--|--|
| 110152 | 3   | 3   | 100%    |  |  |  |
| 110413 | 3   | 2   | 66.667% |  |  |  |
| 110465 | 2   | 0   | 0%      |  |  |  |
| 110564 | 1   | 1   | 100%    |  |  |  |
| 110813 | 1   | 1   | 100%    |  |  |  |
| 111240 | 1   | 0   | 0%      |  |  |  |
| 111320 | 1   | 0   | 0%      |  |  |  |
| 111361 | 2   | 2   | 100%    |  |  |  |
| 111369 | 1   | 1   | 100%    |  |  |  |
| 111426 | 1   | 1   | 100%    |  |  |  |
| 111427 | 1   | 1   | 100%    |  |  |  |
| 111428 | 1   | 1   | 100%    |  |  |  |
| 112050 | 1   | 0   | 0%      |  |  |  |
| 112052 | 1   | 0   | 0%      |  |  |  |
| 112053 | 1   | 1   | 100%    |  |  |  |
| 112058 | 1   | 0   | 0%      |  |  |  |
| 112059 | 1   | 0   | 0%      |  |  |  |
| 112277 | 1   | 1   | 100%    |  |  |  |





#### 8. Fare

船票价格,最小值0,最大值512.329。偏度4.779,严重右偏,无缺失值。从分布图上可以看出,票价越高,幸存的比例越大,因此可以使用等频分组的方法将其离散化为4个分组。

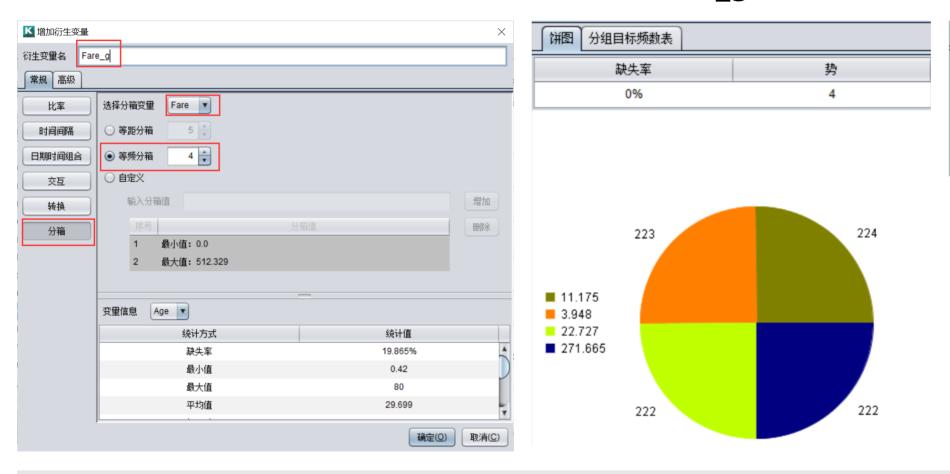




#### 数据预处理——生成衍生变量、连续变量离散化



#### 将Fare等频离散化为4个分组,生成衍生变量Fare\_g





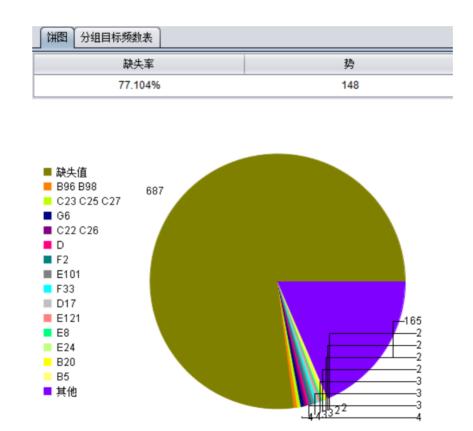
观察生成的衍生变量Fare\_g, 低票价的分组只有不到20%, 而高票价的分组达到了58%。说明此变量可以很好的区分目标变量, 是个重要变量。





#### 9.Cabin

船舱号,分类数很多,缺失率高于77%,看起来这个变量没有用,但我们可以提取该变量是否缺失作为一个信息,即缺失为1,不缺失为0。这也是一种提取缺失值信息的方式。



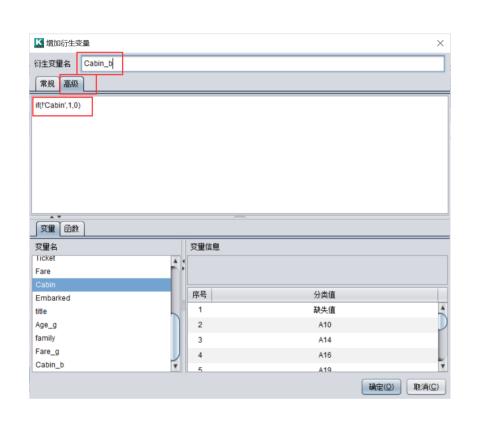


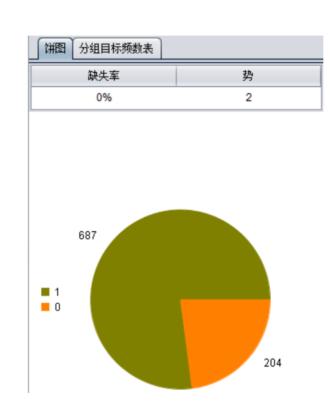


#### 数据预处理——生成衍生变量、提取缺失值信息



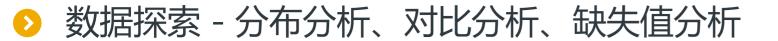
#### 提取Cabin的缺失值信息,Cabin缺失为1,不缺失为0,生成衍生变量Cabin\_b







观察生成的衍生变量Cabin\_b,分组的统计信息显示,Cabin不缺失即Cabin=0的幸存率很高,达到了2/3,而缺失的幸存率不足30%。我们可以大胆猜测,好的船舱才有号码,相当于VIP,其他船舱是没有号码的(还是要多挣钱啊)。





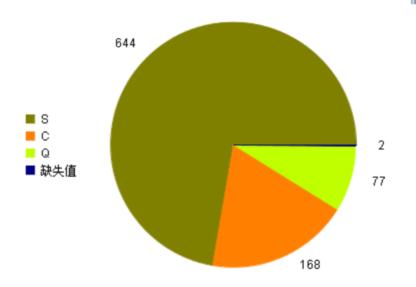
#### 10.Embarked

登船港口,共有三个类别,其中S占大多数,C、Q都较少,还有2个缺失值,智能建模工具会自动处理,不需要处理。

直观上来说登船港口和是否幸存应该没有 关系,但数据告诉我们C港口登船的乘客 幸存率明显高于其他港口,所以有时直觉 这东西并不可靠。

|  | 分组目标频数表 |   |
|--|---------|---|
|  | 缺失率     | 势 |
|  | 0.224%  | 4 |
|  |         |   |

| 饼图   | 分组目标 | 频数表 |      |         |
|------|------|-----|------|---------|
| 分类变量 |      | 样本里 | 正样本数 | 正样本率    |
| 缺失值  |      | 2   | 2    | 100%    |
| С    |      | 168 | 93   | 55.357% |
| Q    |      | 77  | 30   | 38.961% |
| S    |      | 644 | 217  | 33.696% |







#### 11.去除无关变量,保留有用变量

- 1.passengerld, 乘客唯一标识, 没用, 去除;
- 2.Name, 提取了title变量, 没用了, 去除;
- 3.Age, 生成了Age g变量, 不需要了, 去除;
- 4.SibSp、Parch, 生成了family变量, 不需要了, 去除;
- 5.Ticket, 分类数过多, 没用, 去除;
- 6.Fare, 生成了Fare\_g变量, 不需要了, 去除;
- 7.Cabin, 生成了Cabin\_g变量, 不需要了, 去除。



#### 探索和预处理方法汇总



| 序号 | 变量名         | 探索内容        | 探索结果              | 预处理内容   | 预处理结果         |
|----|-------------|-------------|-------------------|---------|---------------|
| 1  | PassengerId | ID变量,没有有用信息 | 无用变量, 舍弃          |         |               |
| 2  | Survived    | 分布分析        | 正负样本比例接近3:5       |         |               |
| 3  | Pclass      | 分布分析, 分组统计  | 等级越高,幸存率越低        |         |               |
| 4  | Name        | 内容分析        | 可以提取出称呼信息         | 提取有价值信息 | 生成衍生变量title   |
| 5  | Sex         | 分布分析, 分组统计  | 女性幸存率远远高于男性       |         |               |
| 6  | Age         | 缺失值分析,分布分析  | 儿童幸存率高,老人幸存率低     | 连续变量离散化 | 生成衍生变量Age_g   |
| 7  | SibSp       | 意义分析        | 兄弟姐妹,配偶,孩子,父母都是家  | 变量交互    | 生成衍生变量family  |
| 8  | Parch       |             | 人                 |         |               |
| 9  | Ticket      | 分布分析        | 没有有用信息, 舍弃        |         |               |
| 10 | Fare        | 分布分析, 分组统计  | 偏斜严重, 票价越高, 幸存率越高 | 连续变量离散化 | 生成衍生变量Fare_g  |
| 11 | Cabin       | 缺失值分析,分布分析  | 缺失率很高,肯能存在有用信息    | 提取缺失值信息 | 生成衍生变量Cabin_b |
| 12 | Embarked    | 缺失值分析,分布分析  | C港口登船乘客生存率高       |         |               |

注意:我们探索时进行了缺失值分析,但没有进行预处理,是因为智能建模工具可以自动智能的进行缺失值处理,因此我们的预处理内容并不包括缺失值预处理。

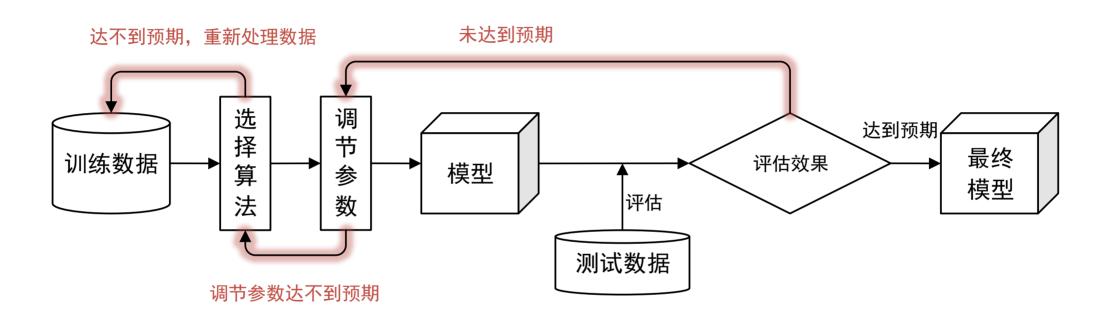


# 建模与评价

#### ● 建模与评价



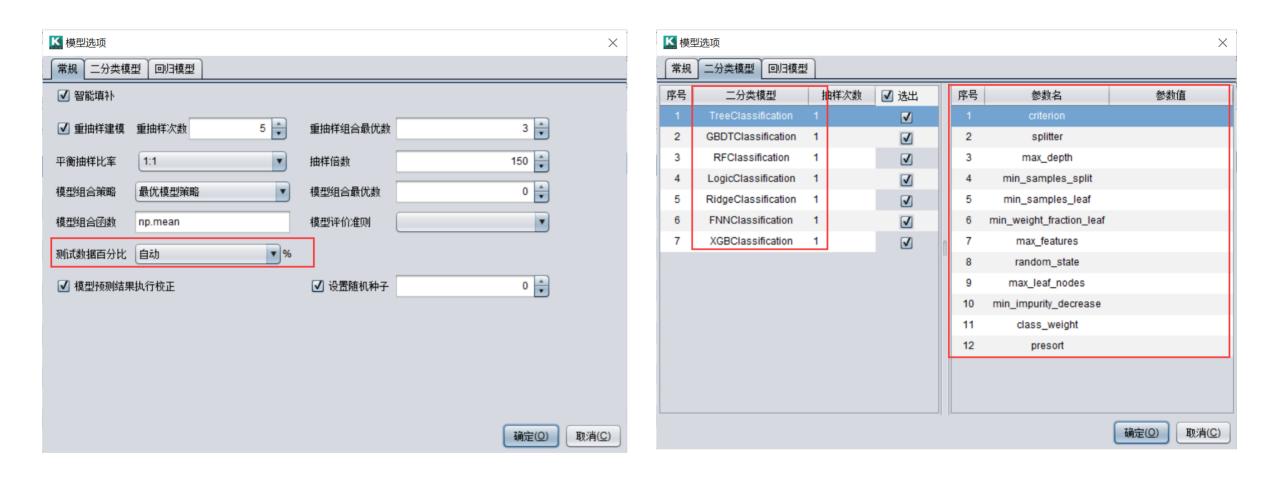
#### 数据预处理后,可以进行建模,建模过程如下图:



建模过程很复杂,我们交给智能建模工具来做,它包括了数据探索,数据预处理,建模、评估等模块。建模时,它会自动将数据切分成训练集和测试集,并在训练集上建模,测试集上评估。它还包括了参数调节,算法融合等智能化建模手段,用户可以很低成本地建成一个比较理想的模型。

#### 选择模型和调节参数过于复杂,我们只要使用默认的选项就可以了。如下图:

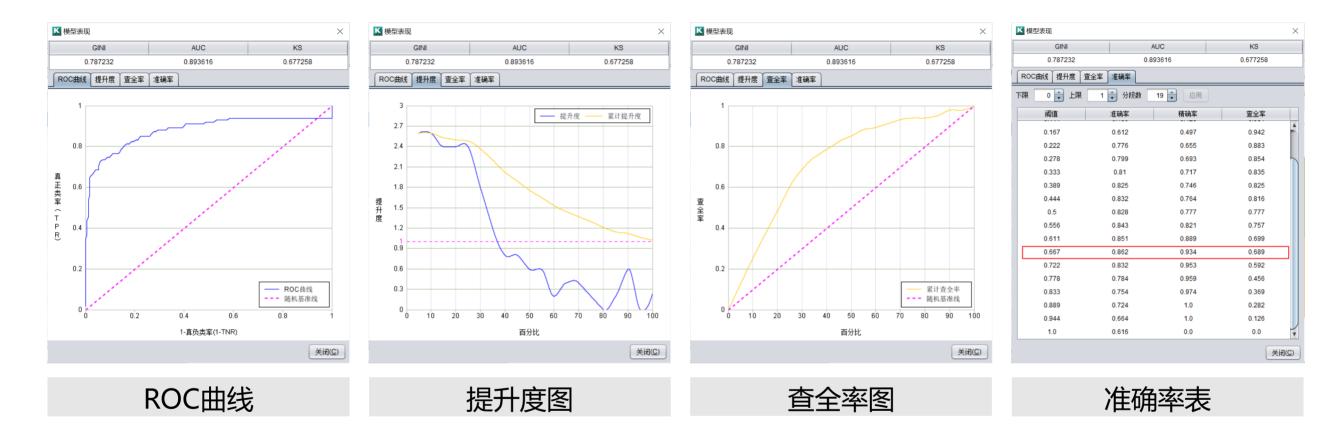




智能建模工具会帮助我们快速的建好模型,采用合适的方法避免过拟合,并在测试集上计算评估指标,方便我们进行评估。

#### 模型表现:

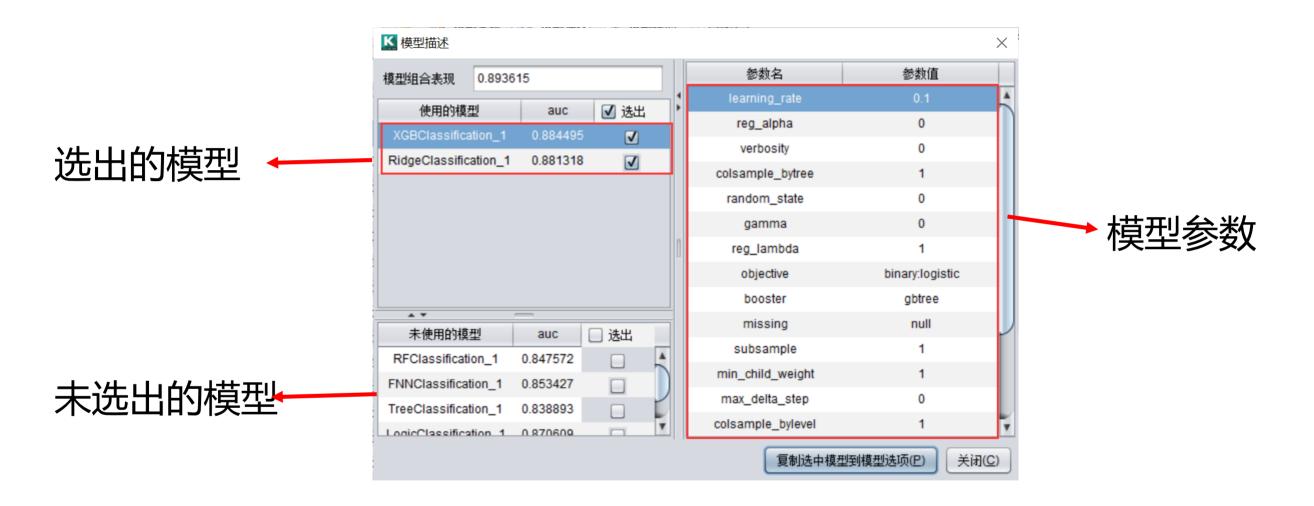




从评价指标来看,模型的表现很不错,其中GINI=0.7872, AUC=0.8936,模型可接受。 观察准确率表可以看到,当阈值取0.667时,准确率最高为0.862。表示把预测概率大于0.667的乘客作为幸存者,小于0.667的乘客作为遇难者时,预测的准确率是最高的。这时的精确率是0.934,表示预测是幸存者的乘客当中,93.4%的乘客确实是幸存者。查全率是0.689,表示预测是幸存者的乘客占全部幸存乘客的68.9%。

#### 建模使用了哪几个模型:





本次建模选出了XGB和Ridge两个分类模型,使用这两个模型组合得到最优的组合模型。模型参数是智能建模自动筛选出的参数,数据挖掘专家可以选择"复制选中模型到模型选项",修改参数重新建模。

#### 变量重要度:

该模型的变量重要度降序排序结果: Sex、Age\_g、titile、Pclass、 Cabin\_b、Fare\_g、Embarked。 其中衍生变量的重要度都挺高的, 说明我们的数据探索和预处理是有 效的。



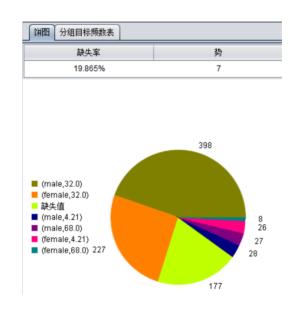


#### 使用高重要度变量交互生成衍生变量,如derive1=Sex\*Age\_g







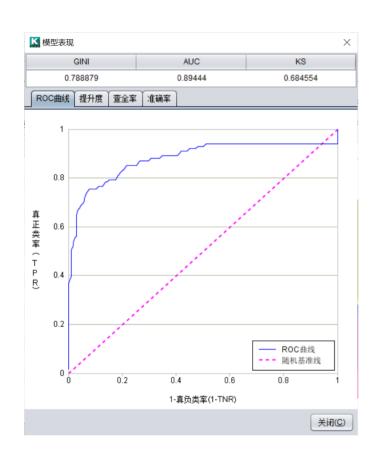




还可以增加其他的交互变量,但要注意,当某一个变量类别数很多时(比如family有9个类别)就不适合继续交互了,因为交互后的类别数是两个变量类别数的乘积(如Sex\*family的类别数就是18),类别数过多会影响模型效果。建议把family进一步分箱(如按成员数量分成,0,1~3,3个以上三类),然后再进行交互。

#### 增加衍生变量后的模型表现:





| 目标变 | Survived    |      | 设    | 置了筛  | 选变量 👚 , |
|-----|-------------|------|------|------|---------|
| 序号  | 变量名         | 类型   | 日期格式 | ☑ 选出 | 重要度     |
| 1   | derive1     | 分类变量 |      | ✓    | 1       |
| 2   | Sex         | 二值变量 |      | V    | 0.374   |
| 3   | Age_g       | 分类变量 |      | V    | 0.278   |
| 4   | family      | 分类变量 |      | V    | 0.241   |
| 5   | Pclass      | 分类变量 |      | V    | 0.185   |
| 6   | title       | 分类变量 |      | V    | 0.133   |
| 7   | Fare_g      | 分类变量 |      | V    | 0.121   |
| 8   | Cabin_b     | 二值变量 |      | V    | 0.098   |
| 9   | Embarked    | 分类变量 |      | V    | 0.094   |
| 10  | Passengerld | ID   |      |      | 0       |
| 11  | Survived    | 二值变量 |      | V    | -       |
| 12  | Name        | 分类变量 |      |      | 0       |
| 13  | Age         | 数值变量 |      |      | 0       |
| 14  | SibSp       | 分类变量 |      |      | 0       |
| 15  | Parch       | 分类变量 |      |      | 0       |
| 16  | Ticket      | 分类变量 |      |      | 0       |

|         | AUC      | GINI     |
|---------|----------|----------|
| 增加衍生变量前 | 0.893616 | 0.787232 |
| 增加衍生变量后 | 0.89444  | 0.788879 |

增加变量后,模型表现比原来更好了, 而且看变量重要度,derive1也成为 最重要的变量,说明新增加的衍生变 量是有用的。



## 模型应用





模型建好后,使用模型对待测集进行预测。

智能建模工具会自动处理待测集,生成衍生变量,如下图:

| Passengerld | Pclass | Name                   | Sex    | Age  | SibSp | Parch | Ticket  | Fare    | Cabin | Embarked |
|-------------|--------|------------------------|--------|------|-------|-------|---------|---------|-------|----------|
| 892         |        | Kelly, Mr. James       | male   | 34.5 | 0     | 0     | 330911  | 7.8292  |       | Q        |
| 893         | 3      | Wilkes, Mrs. James (El | female | 47.0 | 1     | 0     | 363272  | 7.0     |       | S        |
| 894         | 2      | Myles, Mr. Thomas Fra  | male   | 62.0 | 0     | 0     | 240276  | 9.6875  |       | Q        |
| 895         | 3      | Wirz, Mr. Albert       | male   | 27.0 | 0     | 0     | 315154  | 8.6625  |       | S        |
| 896         | 3      | Hirvonen, Mrs. Alexand | female | 22.0 | 1     | 1     | 3101298 | 12.2875 |       | S        |

| Survived_1_percentage | Passengerld | Pclass | Name      | Sex    | Age  | SibSp | Parch | Ticket  | Fare    | Cabin | Embarked | title | Age_g | family | Fare_g | Cabin_b |
|-----------------------|-------------|--------|-----------|--------|------|-------|-------|---------|---------|-------|----------|-------|-------|--------|--------|---------|
|                       | 892         |        | Kelly, Mr | male   | 34.5 | 0     | 0     | 330911  | 7.8292  |       | Q        | Mr    | 32.0  | 0      | 3.9479 |         |
|                       | 893         | 3      | Wilkes,   | female | 47.0 | 1     | 0     | 363272  | 7.0     |       | S        | Mrs   | 32.0  | 1      | 3.9479 | 1       |
|                       | 894         | 2      | Myles, M  | male   | 62.0 | 0     | 0     | 240276  | 9.6875  |       | Q        | Mr    | 68.0  | 0      | 11.175 | 1       |
|                       | 895         | 3      | Wirz, Mr  | male   | 27.0 | 0     | 0     | 315154  | 8.6625  |       | S        | Mr    | 32.0  | 0      | 11.175 | 1       |
|                       | 896         | 3      | Hirvone   | female | 22.0 | 1     | 1     | 3101298 | 12.2875 |       | s        | Mrs   | 32.0  | 2      | 11.175 | 1       |

预测结果列

增加的衍生变量





#### 模型预测结果见下图:

| Survived_1_percentage | Passengerld | Pclass | Name      | Sex    | Age  | SibSp | Parch | Ticket  | Fare    | Cabin | Embarked | title | Age_g | family | Fare_g | Cabin_b |
|-----------------------|-------------|--------|-----------|--------|------|-------|-------|---------|---------|-------|----------|-------|-------|--------|--------|---------|
| 11.29%                | 892         |        | Kelly, Mr | male   | 34.5 | 0     | 0     | 330911  | 7.8292  |       | Q        | Mr    | 32.0  | 0      | 3.9479 |         |
| 72.935%               | 893         | 3      | Wilkes, M | female | 47.0 | 1     | 0     | 363272  | 7.0     |       | S        | Mrs   | 32.0  | 1      | 3.9479 | 1       |
| 9.036%                | 894         | 2      | Myles, Mr | male   | 62.0 | 0     | 0     | 240276  | 9.6875  |       | Q        | Mr    | 68.0  | 0      | 11.175 | 1       |
| 21.742%               | 895         | 3      | Wirz, Mr  | male   | 27.0 | 0     | 0     | 315154  | 8.6625  |       | S        | Mr    | 32.0  | 0      | 11.175 | 1       |
| 71.484%               | 896         | 3      | Hirvonen, | female | 22.0 | 1     | 1     | 3101298 | 12.2875 |       | S        | Mrs   | 32.0  | 2      | 11.175 | 1       |

预测结果,幸存 (Survived=1) 的概率,如第一条预测结果是11.29%,表示该乘客只有11.29%的可能性幸存。



### THANKS

创新技术 推动应用进步

