

Desktop and Excel

Data Processing Cases

Scudata Inc. | Raqsoft Inc.

Table of contents

1

SPL

Table of contents

Table of contents ... 1

Preface... 7

Chapter 1 Reading and writing files and common computing .. 8

1.1 Text file ... 8

1.2 Excel file ... 11

1.3 Files and directories .. 18

1.4 General data table operations .. 20

Chapter 2 Use Excel Add-in ... 27

2.1 Installation and configuration ... 27

2.2 Using spl() function .. 30

2.3 Editing SPL code .. 44

Chapter 3 Using the clipboard... 51

3.1 Basic usage .. 51

3.2 Edit the script at will ... 53

3.3 Multiple result data areas .. 54

3.4 Multiple source data areas ... 57

Chapter 4 Merge Excel files .. 61

4.1 Merge by row - same name and number of columns .. 61

4.2 Merge by column - same name and number of rows .. 62

4.3 Merge by row - different name and number of columns - keep all columns 63

4.4 Merge by row - different name and number of columns - keep only duplicate columns .. 64

4.5 Merge by row - different name and number of columns - keep only columns of the first file

 .. 65

4.6 Merge by column - different name and number of rows - keep all rows 66

4.7 Merge by column - different name and number of rows - keep only duplicate rows........ 67

4.8 Merge by column - different name, number and order of rows - keep only rows of the first

file and align the rows ... 68

4.9 Merge by row - convert file names to column values - unfixed number of files 69

4.10 Merge by column - convert file names to column names ... 70

4.11 Merge by column - one to many - copy data ... 71

4.12 Merge by column - one to many - leave subsequent rows empty 72

4.13 Merge and de-duplicate by row - duplicate whole row of data 73

Table of contents

2

SPL

4.14 Merge and de-duplicate by row - duplicate row headers - keep the data that firstly appear

 .. 74

4.15 Merge and de-duplicate by row - duplicate row headers - keep non-null data 75

4.16 Merge and de-duplicate by row - duplicate row headers - delete all duplicate data 76

4.17 Merge and de-duplicate by column - duplicate column names - keep data in columns that

appear later .. 77

4.18 Merge by row and column simultaneously - keep data that firstly appear 78

4.19 Format conversion - merge multiple card-style files to form one row-based table 79

4.20 Format conversion - merge multiple primary-sub table files to form two row-based tables

 .. 81

4.21 Aggregate files - same rows and columns ... 83

4.22 Aggregate files - merge by row and column simultaneously - aggregate duplicate records

 .. 84

4.23 Aggregate files - aggregate by cell positions - unfixed number of files.......................... 85

4.24 Aggregate files - append and aggregate .. 87

4.25 Aggregate files - cumulate and aggregate ... 89

4.26 Aggregate files - insert aggregation sheet ... 91

Chapter 5 Split Excel file .. 92

5.1 Split by row - by number of rows ... 92

5.2 Split by row - group by data - split into multiple Sheets ... 94

5.3 Split by row - group by data - split into multiple files .. 96

5.4 Split by row - segment by data (by filtering condition) .. 98

5.5 Split by row - generate one card per row .. 100

5.6 Split by row - split multiple cards to make one card generate one file 102

5.7 Format conversion - split tables with primary-sub relationship into cards 105

5.8 Split by column - by column - take column name as file name 108

5.9 Split by column - by column - take column name as Sheet name 110

5.10 Split by column - merge duplicate rows after splitting ... 111

5.11 Split multi-Sheet file into multiple files - unfixed number of Sheets 113

Chapter 6 Searching, positioning and filtering.. 114

6.1 Search for the nth, the nth from last .. 114

6.2 Search for top N, last N ... 115

6.3 Filter by position ... 117

6.4 Search for position of a certain value, take the value by position 118

6.5 Search for row number that satisfies the condition ... 119

6.6 Search for row that satisfies the condition .. 120

Table of contents

3

SPL

6.7 Filter by multiple conditions ... 121

6.8 Search by adjacent rows .. 122

6.9 Take values of adjacent rows in same group (search & filter within adjacent intervals) 123

6.10 Filter by group’s aggregation value .. 125

6.11 Use group’s aggregation value when filtering .. 126

6.12 Filter by maximum or minimum value within a group (find out one for each group) .. 127

6.13 Find out interval in which a certain condition occurs continuously 128

Chapter 7 Calculate cell value and aggregation value .. 129

7.1 Simple column-wise aggregation .. 129

7.2 Conditional aggregation .. 130

7.3 Fill aggregation value in the first row of the same group of data.................................... 131

7.4 Split aggregation value and fill them in detail rows .. 133

7.5 Simple accumulation ... 135

7.6 Accumulate data in each group ... 136

7.7 Filter by Accumulation ... 137

7.8 Early-terminated accumulation ... 138

7.9 Accumulation for continuous occurrence of a certain condition..................................... 139

7.10 Calculate using adjacent row/interval when data of the same group is continuous (link

relative ratio and YOY)... 141

7.11 Calculate using adjacent row/interval when data of the same group is discontinuous

(LRR/YOY in the case of missing data) ... 143

7.12 Merge data of the same group ... 145

7.13 String concatenation and aggregation ... 146

7.14 Calculate proportion using aggregation information of data of the same group 147

7.15 Generate number in each group .. 148

Chapter 8 Operation on sets and judgment of belongingness ... 149

8.1 Intersection, union and difference in the case of simple members - two sets 149

8.2 Intersection, union and difference in the case of simple members - multiple sets 151

8.3 Intersection, union and difference in the case of row-based data - two sets - by key column

 .. 152

8.4 Intersection, union and difference in the case of row-based data - two sets - by whole row

 .. 154

8.5 Intersection, union and difference in the case of row-based data - multiple sets 156

8.6 Judge equality of sets when order is considered ... 159

8.7 Judge belongingness of sets when order is considered ... 160

8.8 Judge equality of sets when order is ignored .. 161

Table of contents

4

SPL

8.9 Judging belongingness of sets when order is ignored ... 162

Chapter 9 Judgment, counting and deleting of duplicate data .. 163

9.1 Judge duplication of simple members ... 163

9.2 Judge duplication of row-based data - by key column .. 164

9.3 Judge duplication of row-based data - by whole row .. 165

9.4 Count number of repetitions of simple members .. 166

9.5 Count number of repetitions of row-based data - by key column 167

9.6 Count number of repetitions of row-based data - by whole row 168

9.7 Deduplication of simple data .. 169

9.8 Deduplication of row-based data - by key column.. 170

9.9 Deduplication of row-based data - by whole row ... 171

9.10 Deduplication of simple data - keeping order ... 172

9.11 Deduplication of row-based data - by key column - keeping order 173

9.12 Deduplication of row-based data - by whole row - keeping order 174

9.13 Filter by number of repetitions .. 175

9.14 Delete data that can be paired ... 176

Chapter 10 Ranking and Sorting ... 177

10.1 Sorting of simple members ... 177

10.2 Sorting of row-based data ... 178

10.3 Sorting of row-based data - by combination of multiple columns 179

10.4 Sorting of row-based data - by expression .. 180

10.5 Sort in group.. 181

10.6 Sort by specified order .. 182

10.7 Sort by specified order in which duplicate values exist .. 183

10.8 Shuffle the data ... 185

10.9 Ranking of simple members.. 186

10.10 Ranking of row-based data.. 187

10.11 Ranking of row-based data - by combination of multiple columns 188

10.12 Ranking of row-based data - by expression .. 189

10.13 Concatenate members with the same ranking ... 190

10.14 Rank in group .. 191

Chapter 11 Grouping and aggregating .. 192

11.1 Simple grouping .. 192

11.2 Group by combination of multiple columns ... 193

11.3 Group by expression ... 194

11.4 Group by segment ... 195

Table of contents

5

SPL

11.5 Enumeration grouping ... 196

11.6 Put every N members in a group ... 197

11.7 Convert one-dimensional array to two-dimensional array .. 198

11.8 Take adjacent data as grouping criteria ... 199

11.9 Group when meeting blank row .. 200

11.10 Group when meeting non-null value ... 201

11.11 Group by interval of data values ... 202

11.12 Concatenate data within group into text .. 203

11.13 Auto-aggregating in the case of multiple columns - unfixed number 204

Chapter 12 Association and comparison ... 205

12.1 Use formulas to handle association ... 205

12.2 Single column association ... 207

12.3 Multiple columns association .. 209

12.4 Reference multi-column data from association table .. 211

12.5 Use formulas to handle interval association .. 213

12.6 Use association table to handle interval association ... 215

12.7 Use a two-dimensional association table .. 220

12.8 Use interval range to perform retroactive searching of association table...................... 222

12.9 Associate multiple rows of data .. 224

12.10 Associate with detail table .. 225

12.11 Find changes through comparison... 227

12.12 Dynamic association operation ... 231

Chapter 13 Conversion between rows and columns ... 234

13.1 Row-to-column conversion for fixed columns .. 234

13.2 Convert row-based table to crosstab ... 235

13.3 Convert crosstab to row-based table ... 236

13.4 Interconversion of upper layer groups for rows and columns - column-to-row 238

13.5 Interconversion of upper layer groups for rows and columns - row-to-column 239

13.6 Put data in a group horizontally into columns ... 240

13.7 Re-group or sort when filling grouped data into columns ... 241

13.8 Convert certain columns of the same row, as group members, to multiple rows 242

13.9 Convert group formed by every N columns to multiple rows 243

13.10 Convert groups to columns after grouping .. 245

13.11 Rearrange multiple columns into a cross-tab .. 247

13.12 Interconversion of rows and columns within a group ... 248

13.13 Interconversion of rows and columns in reverse order ... 249

Table of contents

6

SPL

Chapter 14 Expand and complement .. 250

14.1 Generate continuous array... 250

14.2 Generate continuous array - concatenate results into a string 251

14.3 Expand one row into multiple rows based on value .. 252

14.4 Expand one row into multiple rows after splitting text ... 253

14.5 Make up missing parts to make data continuous ... 254

14.6 Add several blank rows every N rows .. 256

14.7 Insert row after specific row ... 258

14.8 Insert blank row when meeting with data change ... 259

14.9 Expand into multiple columns horizontally .. 260

14.10 Expand into multiple N-column horizontally .. 261

14.11 Generate permutations and combinations ... 263

Chapter 15 Operations on text... 264

15.1 Split string - separate by comma – automatic parsing of data type 264

15.2 Split string - separate by carriage return (CR) - automatic parsing of data type 264

15.3 Split string - separate by multi-character separator ... 265

15.4 Concatenate into string .. 265

15.5 Parse and extract numbers ... 266

15.6 Parse and extract dates .. 267

15.7 Take out different types of characters ... 268

15.8 Take out words .. 269

15.9 Parse and extract Key-Value pair .. 270

Chapter 16 Operations on date and time ... 272

16.1 Count date by year and month .. 272

16.2 Calculate time repeat interval.. 273

16.3 Generate a time sequence with the same time interval – one day 274

16.4 Generate a time sequence with the same time interval – two days 275

16.5 Generate a time sequence with the same time interval – two hours 276

16.6 Generate a time sequence with the same time interval – one month............................. 277

16.7 Generate a time sequence with the same time interval - Sunday 278

16.8 The first Friday of a certain month/quarter/year ... 279

Preface

7

SPL

Preface

With the advantages of easy-to-use, rich data processing functions, strong chart drawing

capability, fast and accurate calculation, etc., Excel has become an indispensable utility software

for data processing in daily office work, and very popular among office workers.

Nevertheless, there are still quite a few complex tasks that are difficult to handle with Excel,

such as the processing of ordered set, the conversion of data structure, the alternate performing of

grouping, filtering and aggregating, the association and comparison between tables, and the merging

and splitting of multiple files. Consequently, these complex tasks often make the office workers so

head-scratching that they have to work overtime to cope. Although Excel comes with the VBA

language, it provides most employees with little substantial help for the reason that VBA language

is insufficient in set orientation, relatively high difficulty to learn and high complexity in use.

SPL, as an open-source programming language, provides Excel with add-in and clipboard, and

enhances the functions like programming, which has the following characteristics: i) SPL is easy to

learn, seamlessly integrated with Excel, and can be used as one function of Excel; ii) SPL provides

a wealth of ordered operations, allowing you to easily achieve the positioning and search; iii) SPL

provides rich structured data processing functions, which allow you to perform not only various

complex calculations but many conversions on data structure; iv) SPL naturally supports the

grouped intermediate results, and is able to filter and aggregate the grouped results, thereby allowing

you no longer worry about the complex situation that grouping, filtering and aggregating occur

alternatively; v) Association and comparison between tables are the forte of SPL, which can be

implemented easily, and done efficiently. In terms of other minor functions, SPL has also made a

lot of supplements to Excel, such as the data generation with special requirements.

With the help of SPL, the office workers can easily solve the deficiencies of Excel in the

functions mentioned above, thereby greatly improving their daily work efficiency.

To learn SPL, please visit: http://c.raqsoft.com/article/1634722432114, where you will find it

easy to learn as long as you have a high school education background.

This book collects a large number of Excel problems that may be encountered in your daily

work from the Internet, and the number of such problems is up to several hundreds, with a wide

coverage. All you have to do is to search for the chapters that interest you and find the appropriate

cases and formulas, and you will be able to apply them to your own work after minor modifications.

In short, SPL can help you avoid working overtime on Excel data processing, and make your

dream of finishing work in advance come true!

http://c.raqsoft.com/article/1634722432114

Reading and writing files and common computing

8

SPL

Chapter 1 Reading and writing files and

common computing

1.1 Text file

1.1.1 Structured text file

The format of structured text is relatively regular, that is, there is one piece of data in each line,

and the columns are separated by separators. SPL can use the function import/export to read and

write the structured text.

For example: the file ordersNT.txt stores the order information, and the columns are separated

by the tab. The business meanings of every column sequentially are: order ID, customer NO, sales

ID, order amount and order date. Part of the data is as follows:

26 TAS 1 2142.4 2009-08-05

33 DSGC 1 613.2 2009-08-14

84 GC 1 88.5 2009-10-16

133 HU 1 1419.8 2010-12-12

32 JFS 3 468.0 2009-08-13

39 NR 3 3016.0 2010-08-21

43 KT 3 2169.0 2009-08-27

…

The following is the partial result after the table is processed in a way that first sort the orders

in ascending order alphabetically by customer NO, and then sort the orders with same customer NO

in descending order by order amount, and finally save it to a new file in the original format:

136 ARO 25 899.0 2009-12-16

16 BDR 27 2464.8 2009-07-23

81 BDR 29 1168.0 2010-10-14

108 BDR 12 480.0 2010-11-15

139 BDR 30 166.0 2010-12-18

93 BON 6 2564.4 2010-10-29

106 BSF 27 10741.6 2009-11-13

…

SPL script:

Reading and writing files and common computing

9

SPL

 A

1 =file("D:/data/ordersNT.txt").import()

2 =A1.sort(_2,-_4)

3 =file("D:/data/ordersNT_sort.txt").export(A2)

A1, A3: Read in and write out structured text file.

A2: The function sort is to sort; _2 and _4 represent the 2nd and 4th columns respectively; By

default, they are sorted in ascending direction, and the negative sign represents the descending

direction.

SPL can also process the text file with column name (title). For example, the first line of

orders.txt is the column name, and part of the data are as follows:

OrderID Client SellerId Amount OrderDate

26 TAS 1 2142.4 2009-08-05

33 DSGC 1 613.2 2009-08-14

84 GC 1 88.5 2009-10-16

133 HU 1 1419.8 2010-12-12

32 JFS 3 468.0 2009-08-13

39 NR 3 3016.0 2010-08-21

43 KT 3 2169.0 2009-08-27

…

Likewise, sort this file and write the result to a new file together with column name:

 A

1 =file("D:/data/orders.txt").import@t()

2 =A1.sort(Client,-Amount)

3 =file("D:/data/orders_sort.txt").export@t(A2)

A1, A3: The option @t means the text file is read and written together with column name.

A2: Sort by column names rather than sequence number.

The default separator of the function import/export is tab, and the option @c means that the

comma is used as the separator (usually used in csv files). If other special separators are encountered,

SPL can also handle.

For example, the orders_semi.txt uses || as the separator:

Reading and writing files and common computing

10

SPL

 A

1 =file("D:/data/orders_semi.txt").import@t(;,"||")

2 =A1.select(Amount>=1000 && Amount<2010)

3 =file("D:/data/orders_semi_select.txt").export@t(A2;"||")

The default function of the function export is to write the data to a new file, or to overwrite

the file with the same name, but sometimes we need to append new data with the same structure to

the original file, in this case, we can use the option @a:

=file("D:/data/orders_semi_select.txt").export@at(A2;"||")

1.1.2 String sequence

The format of some text files is not regular, and it cannot directly perform the structured

calculation. Such files, however, can be read as a sequence of strings. The formats of such semi-

structured data are numerous, let’s take multi-line data as an example to illustrate the general method

of reading and writing the string sequence in SPL.

The first 2 lines of every 3 lines in file 3lines.txt correspond to one piece of data, and the 3rd

line is useless. Part of the data is as follows:

26 TAS 1 2142.4

2009-08-05

some comment

33 DSGC 1 613.2

2009-08-14

some comment

27 TAS 1 2142.4

2009-08-05

some comment

Remove the useless line from the file and write the result to a new file:

 A

1 =file("D:/data/3lines.txt").read@n()

2 =A1.step(3,1,2)

3 =file("D:/3lines_reuslt.txt").write(A5)

A1: Read the text file. @n means reading as a sequence by line, and each member of the

sequence corresponds to a line.

A2: Take the first member and the second member for every three members of sequence A1.

A3: Write the sequence to a text file, and each member of the sequence corresponds to a line.

Reading and writing files and common computing

11

SPL

1.2 Excel file

1.2.1 Structured tables

The structured Excel table is relatively regular, and SPL reads and writes it with the

xlsimport/xlsexport function.

For example: the business meanings of every column of the first sheet in ordersNT.xlsx

sequentially are: order ID, customer NO, sales ID, order amount and order date. Part of the data is

as follows:

 A B C D E

1 26 TAS 1 2142.4 2009/8/5

2 33 DSGC 1 613.2 2009/8/14

3 84 GC 1 88.5 2009/10/16

4 133 HU 1 1419.8 2010/12/12

5 32 JFS 3 468 2009/8/13

6 39 NR 3 3016 2010/8/21

7 43 KT 3 2169 2009/8/27

The following is the partial result after the table is processed in a way that first sort the orders

in ascending order alphabetically by customer NO, and then sort the orders with same customer NO

in descending order by order amount, and finally save it to a new Excel in the original format:

SPL script:

A1, A3: read and write the first sheet of Excel. If you want to read the specified sheet, you can

use:

xlsimport(;Sheet number or Sheet name)

If you want to write to the specified sheet, you can use:

xlsexport(A2; Sheet number or Sheet name)

SPL can also process the structured table with column name (title) in a similar way to process

text files. For example, partial data of orders.xlsx is as follows:

 A

1 =file("D:/data/ordersNT.xlsx").xlsimport()

2 =A1.sort(_2,-_4)

3 =file("D:/data/ordersNT_sort.xlsx").xlsexport(A2)

Reading and writing files and common computing

12

SPL

 A B C D E

1 OrderID Client SellerId Amount OrderDate

2 26 TAS 1 2142.4 2009/8/5

3 33 DSGC 1 613.2 2009/8/14

4 84 GC 1 88.5 2009/10/16

5 133 HU 1 1419.8 2010/12/12

6 32 JFS 3 468 2009/8/13

7 39 NR 3 3016 2010/8/21

8 43 KT 3 2169 2009/8/27

Sort this file and write the result to a new file together with column name:

 A

1 =file("D:/data/orders.xlsx").xlsimport@t()

2 =A1.sort(Client,-Amount)

3 =file("D:/data/orders_sort.xlsx").xlsexport@t(A2)

Sometimes the first few rows of the table are useless and need to be skipped, for example:

 A B C D E

1
orders from 2009 to 2010

2

3

4 OrderID Client SellerId Amount OrderDate

5 26 TAS 1 2142.4 2009/8/5

6 33 DSGC 1 613.2 2009/8/14

7 84 GC 1 88.5 2009/10/16

8 133 HU 1 1419.8 2010/12/12

9 32 JFS 3 468 2009/8/13

Reading from row 4:

=file("D:/data/ orders.xlsx").xlsimport@t(;,4)

Sometimes we need to append new data with the same structure to the original table. In this

case, we can use the option @a:

=file(""D:/data/orders_sort.xlsx").xlsexport@at(A2)

Reading and writing files and common computing

13

SPL

If the appearance attribute is set for the last non-blank row of the original table, the appended

data will inherit the style of this row. For example, the display format of column D of original table

is #,##0.00, and the style of column E is mmm-dd-yyyy, as shown in the table below:

 A B C D E

1 OrderID Client SellerId Amount OrderDate

2 26 TAS 1 2,142.40 Aug-05-2009

3 33 DSGC 1 613.20 Aug-14-2009

4 84 GC 1 88.50 Oct-16-2009

After appending the data, the result is as follows:

 A B C D E

1 OrderID Client SellerId Amount OrderDate

2 26 TAS 1 2,142.40 Aug-05-2009

3 33 DSGC 1 613.20 Aug-14-2009

4 84 GC 1 88.50 Oct-16-2009

5 133 HU 1 1,419.80 Dec-12-2010

6 32 JFS 3 468.00 Aug-13-2009

The style attribute has been set for the first blank row after the last non-blank row of original

table, the appended data will inherit the style attribute of this row. Using this feature, we can achieve

the data output from scratch in the specified format. For example, first create a blank Excel, and set

the display format of column D in row 2 to #,##0.00, and that of column E to mmm-dd-yyyy.

 A B C D E

1 OrderID Client SellerId Amount OrderDate

2

Then append data to the blank table, and the result is as follows:

 A B C D E

1 OrderID Client SellerId Amount OrderDate

2 133 HU 1 1,419.80 Dec-12-2010

3 32 JFS 3 468.00 Aug-13-2009

1.2.2 Two-dimensional string sequence

Some Excel tables are not regular in format and do not have clear column attributes. In this

case, they can be processed as a two-dimensional string sequence.

Reading and writing files and common computing

14

SPL

For example, the following key-value data:

 A B C D E

1 A=123 B=456 C=789

2 A=678 B=783 A=900 U=89

3 A=330 Y=67 B=890 C=311 F=19

Now, we want to split the above data into 2 columns by key and value, and sort them by key

and value, and finally write them to a new Excel. The result is as follows:

 A B

1 A 123

2 A 330

3 A 678

4 A 900

5 B 456

6 B 783

7 B 890

8 C 311

9 C 789

10 F 19

11 U 89

12 Y 67

SPL script:

 A

1 =file("D:/data/keyvalue.xlsx").xlsimport@w()

2 =A1.conj().select(~)

3 =A2.(~.split("="))

4 =A3.sort(~(1),~(2))

5 =file("D:/data/keyvalue_result.xlsx").xlsexport@w(A4)

A1: read in the Excel, @w means reading as a two-dimensional string sequence. The whole is

a large sequence, and each row is not only a member of the large sequence, but also a small sequence;

each cell in the row is a member of the small sequence.

A2: Concatenate the 2D sequence into 1D sequence and remove possible blank cells such as

A1, B1, E2.

Reading and writing files and common computing

15

SPL

A3: Split the string sequence into key and value.

A4: Sort by key and value.

A5: Write the result to a new Excel, @w means writing a sequence of sequences.

1.2.3 Cells

Sometimes we need to read and write the Excel cells accurately.

For example: the table below has the editor and edit date in row 1.

 A B C D E

1 editor:emily date:Dec-30-2011

2 OrderID Client SellerId Amount OrderDate

3 26 TAS 1 2,142.40 Aug-05-2009

4 33 DSGC 1 613.20 Aug-14-2009

5 84 GC 1 88.50 Oct-16-2009

6

7

Now we want to copy the editor and edit date to the corresponding position on row 7, the result

is as follows:

 A B C D E

1 editor:emily date:Dec-30-2011

2 OrderID Client SellerId Amount OrderDate

3 26 TAS 1 2,142.40 Aug-05-2009

4 33 DSGC 1 613.20 Aug-14-2009

5 84 GC 1 88.50 Oct-16-2009

6

7 editor:emily date:Dec-30-2011

SPL script:

Reading and writing files and common computing

16

SPL

 A B

1 =file("D:/data/cell.xlsx")

2 =A1.xlsopen()

3 =str=A2.xlscell("A1") =A2.xlscell("A7";str)

4 =str=A2.xlscell("E1") =A2.xlscell("E7";str)

5 =A1.xlswrite(A2)

A2: Open the Excel file as an object.

A3: Read the cell A1 and assign the variable str. By default, it is to read from the first sheet. If

you want to read the cell A1 in the specified sheet, you can use:

A2.xlscell("A1",Sheet number or Sheet name)

B3: Write contents of cell A1 to cell A7. Similarly, if you want to write to cell A7 of the

specified sheet, you can use:

A2.xlscell("A7",Sheet number or Sheet name;str)

A4-B4: Read the contents of cell E1, and write to cell E7.

A5: Write Excel object to Excel file.

In the above example, A1-E1 that need to be read are consecutive cells, and A7-E7 that need

to be written are also consecutive cells. For the reading and writing of such consecutive cells, SPL

can implement with a more simplified code:

 A

1 =file("cell.xlsx")

2 =A1.xlsopen()

3 =arry=A2.xlscell@w("A1":"E1")

4 =A2.xlscell("A7":"E7";arry)

5 =A1.xlswrite(A2)

A3: Read consecutive cells in sequence format

A4: Write the sequence to consecutive cells, and each member of the sequence corresponds to

one cell. You can either use a sequence to write data to consecutive cells or use a string separated

by TAB (\t) or Enter (\r), where TAB means horizontal (column) separation and Enter means vertical

(row) separation.

1.2.4 Multi-sheet processing

Using Excel objects, not only can read and write cells but also process multiple sheets.

A certain Excel uses multiple sheets to store the order tables. Each sheet has the same format,

but the number and name are not the same. Now we want to sort these orders into a new Excel to

make each sheet store one year's data.

Reading and writing files and common computing

17

SPL

SPL script:

 A

1 =file("orders_sheet.xlsx").xlsopen()

2 =A1.(stname).(A1.xlsimport@t(;~)).conj()

3 =A2.group(string(year(OrderDate)):name;~:content)

4 =file("orders_result.xlsx").xlsopen@w()

5 =A3.(A4.xlsexport@t(~.content;string(~.name)))

6 =A4.xlsclose()

A1: Open the source Excel file as an object.

A2: Traverse each sheet, read the order of each sheet, and concatenate all the orders.

A1.(stname) means taking out all sheet names from the Excel object A1.

A3: Group the orders by year.

A4: Open the target Excel file as an object. @w means write mode, and a new file will be

created if the file does not exist.

A5: Traverse each group (yearly) orders of A3 and write them to the new sheet of A4 in turn.

A6: The Excel object opened in @w mode must be closed with the function xlsclose.

Reading and writing files and common computing

18

SPL

1.3 Files and directories

1.3.1 Parse file name

The function filename can parse out different parts of the file name:

 A

1 =filename("D://file/test.splx")

2 =filename@e("D://file/test.splx")

3 =filename@n("D://file/test.splx")

4 =filename@d("D://file/test.splx")

A1: File name with extension: test.splx

A2: Extension: splx

A3: File name without extension: test

A4: Path: D://file

Having known every part of the filename, you can use the concat function to piece together

the full path, for example:

 A

1 =concat("D://file/","test",".splx")

A1: Full path: D://file/test.spx

1.3.2 Traverse the files

There are many Excel files under a certain directory, and the first Sheet of these files stores the

order data and has the same structure. Now we want to concatenate these orders into a new Excel.

SPL script:

 A

1 =direcotory@p("d:/data/*.xlsx")

2 =A1.conj(file(~).xlsimport@t())

3 =file("d:/result.xlsx").xlsexport@t(A2)

A1: Search for all file names whose extension is xlsx in the directory. @p means returning the

full path.

A2: Loop through the file names to read Excel, and then concatenate the data.

Reading and writing files and common computing

19

SPL

The function directory has more functions, such as using the @s option to search for

subdirectories recursively, using the @d option to list subdirectories, using @r to delete directories,

and using @m to create directories.

1.3.3 System directory

In the previous example, we use the full path to access the data file. If the main path in the

system directory is configured, it can be used as the root directory. In this case, we can use the

relative path to access the data file. See the figure below for the specific configuration interface:

For example, when the main path is not configured, the script is:

file("d:/data/p/orders.xlsx").xlsimport()

When configuring main path=d:\data, the script can be written as:

file("p/orders.xlsx").xlsimport()

If the main path is not configured, and a direct relative path is used, the actual main path is the

directory where esProc is started. When esProc is started directly (or via shortcut), the directory is

[esProc installation directory\bin]. When double-clicking the .splx file to start esProc indirectly, the

directory is the directory where the script file is located. Using the following script can obtain the

current main path:

filename@p("")

In addition to the main path, esProc has other important system directories.

temp: It's the directory where the calculation engine stores temporary files. If it is not set, the

operating system temporary directory will be used by default.

searching path: It's the root directory of the script file, including the main path. Multiple

directories can be set, and the directories are separated by semicolon.

Reading and writing files and common computing

20

SPL

1.4 General data table operations

1.4.1 T function and E function

When using the import()/xlsimport function, it needs to define the file object first. Since the

operation for reading and writing of the structured files is very common, SPL provides a simpler T()

function, which can automatically take different actions based on the file extension.

 A

1 =T("data.txt")

2 =T("data.csv")

3 =T("data.txt";”|”)

4 =T@b("data.csv")

5 =T("data.xls")

6 =T("data.xlsx")

7 =T("data.xlsx";"sheet2")

8 =T@b("data.xlsx")

A1: With title, columns to be separated by TAB

A2: With title, columns to be separated by comma

A3: With title, columns to be separated by |

A4: Without title, separated by comma

A5: With title

A6: With title

A7: With title, specify sheet

A8: Without title

T() function has also other parameters, which allow you to choose to read partial columns, and

support writing. Because it is not very common, no examples are given here.

The data in Excel table often appears in the form of two-dimensional sequence, and it will be

more convenient to convert the sequence to a table sequence when processing. SPL provides a short

E function to process the said conversion:

Reading and writing files and common computing

21

SPL

 A

1 =file("data.xlsx").xlsimport@w()

2 =E(A1)

3 =E@b(A1)

4 =E(A2)

5 =E@b(A2)

A1: Read the Excel as a 2D sequence

A2: Convert two-dimensional sequence to table sequence, the first row is the title

A3: Without title

A4: Convert the table sequence to two-dimensional sequence, the first row is the title

A5: Ignore the title

E() function has other options, which allow you to convert the table sequence and TAB/Enter

separated strings to each other. You can refer the documents to do experiments by yourself.

1.4.2 Filtering

Filter out the row that meets the condition from the data table.

Example: We want to filter out the student scores of Class 10 from the student score table

Students_scores.txt. The first row in the file is the column name, and the data starts from the second

row, as shown in the figure below.

 A

1 =T(“E:/txt/Students_scores.txt”).select(CLASS==10)

A1: Read the data in the file and then select the rows of class 10. The T function will

automatically select the appropriate separator based on the file extension.

1.4.3 Summary

Summarize the data in the data table.

Example: Calculate the average score in Chinese, the highest score in math, and the total score

in English for all students in the student score table.

Reading and writing files and common computing

22

SPL

 A

1 =T(“E:/txt/Students_scores.txt”)

2 =A1.avg(Chinese)

3 =A1.max(Math)

4 =A1.sum(English)

A1: read the data in the file.

A2: calculate the average score in Chinese

A3: calculate the highest score in Math

A4: calculate the total score in English

1.4.4 Cross-column calculation

Perform cross-column calculation on the data in the data table.

Example: calculate the total score of each student in the student score table.

 A

1 =T(“E:/txt/Students_scores.txt”)

2 =A1.derive(English+Chinese+Math:total_score)

A1: read the data in the file.

A2: add a column total_score in A1, and the value of this new column is the sum of English,

Chinese and Math columns

The results in A2 are as follows:

1.4.5 Sorting

Sort the data in ascending/descending order.

Example: sort the student score table in ascending order by class number, and in descending

order by total score.

Reading and writing files and common computing

23

SPL

 A

1 =T(“E:/txt/Students_scores.txt”)

2 =A1.sort(CLASS)

3 =A1.sort(CLASS,-Math)

A1: read the data in the file.

A2: sort in ascending order by class number

A3: first sort in ascending order by class number, and then sort in descending order by math

score within the class

1.4.6 Grouping and aggregating

Group and aggregate the data in the data table.

Example: query the lowest score in English, the highest score in Chinese and the total score in

Math for each Class.

 A

1 =T(“E:/txt/Students_scores.txt”)

2 =A1.groups(CLASS;min(English),max(Chinese),sum(Math))

A1: read the data in the file.

A2: group by class, and calculate the lowest score in English, highest score in Chinese, and

total score in math for each class.

1.4.7 Filter after grouping

Filter the data after they are grouped and aggregated.

Example: find the classes with an average English score below 70.

 A

1 =T(“E:/txt/Students_scores.txt”)

2 =A1.groups(CLASS;avg(English):avg_En)

3 =A2.select(avg_En<70)

A1: read the data in the file.

A2: group by class, and calculate the average English score of each class and name the new

column as avg_En

A3: select those with an average English score of below 70 from A2

The query results in A3 are as follows:

Reading and writing files and common computing

24

SPL

1.4.8 Association

⚫ Perform the associative calculation on the data in two data tables.

Example: The sales order information and product information are stored in two Excel files,

respectively, and now we want to calculate the sales of each order. The data structure of the two

files is as follows:

 A

1 =T(“e:/orders/sales.xlsx”)

2 =T(“e:/orders/product.xlsx”).keys(ID)

3 =A1.join(ProductID,A2,Name,Price)

4 =A3.derive(Quantity*Price:amount)

A1: read the sales order data.

A2: read the product information data, and set ID as the primary key

A3: associate A1 with the primary key in A2 according to the ProductID, and join the data of

Name and Price columns at the same time

A4: add a column amount in A3, and its value is product of the sales Quantity and product

Price

⚫ Perform the associative query on the data in two data tables.

Example: We still use the above-mentioned two files to query the sales orders with product

price greater than 20 dollars.

Reading and writing files and common computing

25

SPL

 A

1 =T(“e:/orders/sales.xlsx”)

2 =T(“e:/orders/product.xlsx”).select(Price>20).keys(ID)

3 =A1.switch@i(ProductID,A2)

A1: read the sales order data.

A2: read the product information data to select the product information with a price greater

than 20, and then set the ID as the primary key.

A3: associate A1 with the primary key in A2 according to ProductID, the option @i means

that when a product ID that matches the ProductID cannot be found in A2, this row will be deleted.

⚫ Perform the associative query on the data in primary table and detail table.

Example: Part of data in the employee information table (employee.xlsx) and employee family

member table (family.xlsx) are as follows. Now we want to query the information of employees

whose family has the elderly person over 70 years old.

 A

1 =T("e:/work/employee.xlsx")

2 =T("e:/work/family.xlsx").select(age(Birthday)>=70)

3 =join(A1:employee,Eid;A2:family,Eid)

4 =A3.conj(employee)

A1: read the employee information data

A2: read the employee family member data and select members over the age of 70

A3: associate A1 and A2 according to Eid, and filter to delete unmatched row, and name A1

as employee and A2 as family

A4: take out the employee column in A3 and concatenate as a table sequence

Reading and writing files and common computing

26

SPL

Use Excel Add-in

27

SPL

Chapter 2 Use Excel Add-in

2.1 Installation and configuration

2.1.1 Environment

The 64-bit (not 32-bit) version of both Windows and Excel is required, otherwise an exception

will occur.

To check whether it is 64-bit:

1. For Windows: Click: Settings > System > About, to find the information.

2. For Excel: Open Excel and click: File > Account > About Excel, a pop-up dialog box will

display the current Excel version, as shown below:

About Microsoft® Excel® 2019

Microsoft® Excel® 2019MSO (Version 2202 Build 16.0.14931.20116) 64Bit

Product ID: 00405-32554-86889-AAOEM

Session ID: 5DCA85DD-F5BE-4570-8CE4-4D56EF93273D

About language: Make sure the esProc version you are installing has the same language as your

operating system. That is, install an English-version esProc if you are using an English-version OS,

and a Chinese-version esProc if your OS is Chinese version, otherwise problems like messy code

will occur.

If messy code or other problems occur after a Chinese-version esProc is installed under a

Chinese-version OS, check OS configurations in:

Settings > Time & language > Language > Administrative language settings > Change system

locale

Check whether the current selected language is Chinese, if not, change it to Chinese.

Use Excel Add-in

28

SPL

2.1.2 Installation

Start the esProc as administrator, click Tool > Automatically install excel plug-ins:

After that, a message will appear on the screen:

It indicates that the Excel plug-in has been installed successfully.

If the above message does not appear, you can find the reason by clicking Output in the right-

bottom of the designer:

Generally, if you do not start esProc as administrator, the installation will fail.

The spl() function will be added to Excel after loading successfully.

Use Excel Add-in

29

SPL

2.1.3 Configure esProc main path

To configure the esProc main path, the script file (.splx) to be invoked should be placed in the

target directory in advance, otherwise the search will fail. To set the main path, follow the directions

below:

Open esProc, click Tool > Options, and select Environment to find Main path

Restart the esProc and Excel to make the configuration come into effect.

2.1.4 Logs

You can view exceptions in the log file. The file’s path is %appdata%\esproc\tmp\Excel.log.

Use Excel Add-in

30

SPL

2.2 Using spl() function

Once the add-in is installed and configured, the spl() function will be available in Excel for

executing the SPL script in Excel cell and obtaining the calculated result set.

The spl() function has two parameter formats:

1. spl(exp, arg1, …)

exp

It is an expression string in SPL syntax, starting with =. In the string, the

question mark is used to represent the referenced parameter; ?1

corresponds to the first parameter, and ?2 corresponds to the second one,

and so on.

arg1,…

It is the parameter value. There can be none or multiple parameters (30 at

most). You can fill in the constants, or reference the current Excel cell (a

single cell or a range of cells are allowed).

For complex computing requirements, execute the script file coded in SPL in the format of:

2. spl(splx(…), …)

splx()

It is the script file name without an extension. .splx will be added ma

ndatorily, and must be followed by parentheses ().

If the script has parameters, it also needs to write ?1,?2,.. etc. in () to

indicate these parameters.

arg1,…
It is the parameter required by corresponding to the script file in turn.

You can reference a single Excel cell or a range of cells.

The spl() function may return a single value, a one-dimensional array or a two-dimensional

array.

2.2.1 No parameters

To generate random integers within 100:

Calculation result:

Use Excel Add-in

31

SPL

2.2.2 A single parameter

In the following Excel file, the first column is the range of random integers, and the second

column is the number of the integers randomly generated according to the range given in the first

column:

Calculation result:

Drag B2 down to every relevant cell to obtain the results:

2.2.3 Double quotation marks exist in expression

Here’s an Excel file containing date data:

Use Excel Add-in

32

SPL

These data are not in date format and cannot be recognized by Excel. Instead, they are regarded

as common string of numbers. Now we need to convert them to date type data.

SPL provides a simple writing method: =date(A2,"yyyyMMdd"), which can parse A2 to the

date format in the form of "yyyyMMdd". Such SPL script itself, however, contains double quotation

marks that, when writing into the spl() function, need to be escaped according to the Excel rule by

writing " as "", as shown below:

The result is as follows:

Drag B2 down to every relevant cell to get the results:

Use Excel Add-in

33

SPL

Notes:

You need to first set the type of cell where the date data is located to text type.

2.2.4 Multiple parameters

In the following Excel file, the r, g, b, a represent the red, green, blue and transparency

component respectively:

Now we want to add a column on the right to compute the color value combined by the color

components of each row. Enter the SPL code as follows:

Use Excel Add-in

34

SPL

In this code, ?1,?2,?3,?4 respectively corresponds to the first parameter A2, the second

parameter B2, the third parameter C2 and the fourth parameter D2.

After entering the above expression, the color value of the current row can be calculated as

follows:

Then drag E2 down to every relevant cell to obtain all results:

Use Excel Add-in

35

SPL

2.2.5 A single-row range parameter

According to the following Excel file, we want to calculate the median of each row after

removing the largest value and the smallest value in each row, and then fill the result in the rightmost

column:

Enter =spl("=?.conj().sort().m(2,-2).median()",A2:H2) in I2, and Excel will pass the array

combined by the range of cells A2:H2 to SPL expression "=?.conj().sort().m(2,-2).median()" to

replace the parameter ? in it, and return the median with the largest and the smallest values

removed.

Below is the result:

Use Excel Add-in

36

SPL

Notes:

1. Excel will automatically convert the array parameter to a two-dimensional array, even if

there is actually only one row (or one column). Therefore, there is a need to use conj() in the SPL

script to concatenate into a single-level sequence.

At his point, dragging I2 down to every relevant row can automatically compute the median of

every row, as shown in the figure blow:

Use Excel Add-in

37

SPL

2.2.6 A single-column range parameter

According to the following Excel file, we want to calculate the median of each column after

removing the largest value and the smallest value in each column, and then fill the result in the

bottom row:

Enter =spl("=?.conj().sort().m(2,-2).median()",B1:B13) in A14, and Excel will pass the array

combined by the range of cells B1:B13 to SPL expression "=?.conj().sort().m(2,-2).median()" to

replace the parameter ? in it, and return the median with the largest and the smallest values removed.

Below is the result:

Notes:

1. Excel will automatically convert the array parameter to a two-dimensional array, even if

there is actually only one row (or one column). Therefore, there is a need to use conj() in the SPL

script to concatenate into a single-level sequence.

Use Excel Add-in

38

SPL

At this point, dragging B14 right to every relevant column can automatically compute the

median of every column on the right, as shown in the figure blow:

2.2.7 Multi-row, multi-column range parameter

According to the following Excel file:

We want to add a column on the right to calculate the cumulative average of sampling data.

That is, for the row of the first day, compute the average of the first day; for the row of the second

day, compute the average of the first two days; for the records of the third day, compute the average

Use Excel Add-in

39

SPL

of the first three days, and so on. Likewise, we remove the largest and the smallest values before

computing the average.

Below is the result:

Enter the expression: =spl("=?.conj().sort().m(2:-2).avg()",B3:Y3) in Z3 and get the result

5.40.

As can be seen from the expression that the parameter passed in is B3:Y3, where the first

cell B3 is added with two symbols $, the reason is that we should always keep accumulating from

cell B3 when copying the expression down since what we want to calculate is the cumulative

average.

Drag Z3 down to every relevant row to get the cumulative average of every row.

2.2.8 Mixed parameters

The following Excel file contains the sampling data per hour for each day:

Use Excel Add-in

40

SPL

Now we want to add a column on the right to calculate the average of the largest n values in

all sampling data of this month as of the current day, and n is determined by the data in column Z.

Enter the SPL expression in AA3 as follows:

=spl("=?1.top@2(-?2).avg()", B3:Y3, Z3)

The first parameter =?1.top@2(-?2).avg() is the SPL expression, which means that the top n

values are calculated for parameter ?1, and n is determined by parameter ?2; Then calculate the

average of top n values.

The second parameter B3:Y3 is the parameter passed to SPL expression and corresponds to

?1

The third parameter Z3 is the parameter passed to SPL expression and corresponds to ?2.

Drag AA3 down to every relevant row to get the final result:

Use Excel Add-in

41

SPL

2.2.9 Return a one-dimensional array

To generate 10 random integers within 100 and fill them in the first row in sequence:

After Entering the expression in A1, press Ctrl-Enter to execute the macro defined in

esproc_template.xla, and fill the calculation result into adjacent cell:

When the expression returns a one-dimensional array, pressing Ctrl-Enter will fill all members

of the array into a row of cells from left to right beginning from the current cell. If you don’t use the

hotkey, only the first member is filled into the cell holding the expression.

2.2.10 Return a two-dimensional array

We have an Employee.xlsx file:

Use Excel Add-in

42

SPL

We want to count the number of employees in each department by the column DEPT. Enter

the SPL script in A1 as follows:

This Excel file is preferably stored under esProc main path, so that it can be located without

writing the path name, otherwise its full path name needs to be written in the expression.

Press Ctrl-Enter to fill the calculation result into adjacent cell:

Notes:

1. You need to press Ctrl-Enter to trigger the fill action when a two-dimensional array is

returned. Values will be filled rightward and downward to a range of cells beginning from the

current cell. Only the first member of the array is filled into the cell holding the expression if the

hotkey isn’t used.

2. If there is " in the SPL script, it needs to be escaped to "" according to the Excel rule.

Use Excel Add-in

43

SPL

2.2.11 Concatenate SPL expression dynamically

According to the following Excel file:

Now we want to add a column on the right to compute the cumulative aggregate of sampling

data. The aggregate function is determined by the function name given in column Z. If it is median,

compute the median; if it is avg, compute the average; if it is sum, compute the sum, and so on.

Enter the expression: =spl("=?.conj()."&Z3&"()",B3:Y3) in AA3, where the first parameter

"=?.conj()."&Z3&"()" is a dynamically concatenated SPL expression; the second parameter

B3:Y3 is to pass in an array consisting of values in the range of B3:Y3.

In the pass-in parameter B3:Y3, the first cell is added with two symbols $, the reason is that

we should always keep accumulating from cell B3 when copying the expression down since what

we want to calculate is the cumulative aggregate, and this cell should remain unchanged.

Drag AA3 down to every relevant row to get the cumulative aggregate of every row.

Use Excel Add-in

44

SPL

2.3 Editing SPL code

For certain computations, the SPL expression may be very complex, even more than one line,

which makes it inconvenient to edit directly in Excel. To solve this problem, esProc provides the

Excel Copy/Paste feature to copy the edited code to Excel.

2.3.1 Generate complex SPL script with esProc

We have an Excel file as follows:

Now we want to add a row at the bottom to calculate the average of the sampling data for each

hour in January. We would write one expression that can calculate the average of every cell in the

new row without copying the expression to each cell.

The calculation result is as follows:

In this example, it needs to take B2:Y33 as the parameter. Open the esProc, and define the

parameter as follows:

Use Excel Add-in

45

SPL

Note: The parameter name here must be B2:Y33, which is the same as the parameter passed

from Excel.

First, edit the script:

 A

1 =E('B2:Y33')

2 =to(24).("avg('"+string(~)+"'):'"+string(~)+"'")

3 =A1.groups(;${A2.concat@c()})

4 return A3(1).array()

A1: Convert the passed-in two-dimensional array parameter 'B2:Y33' to a table sequence,

with the first row as column name; The parameter name needs to be enclosed in single quotation

marks to distinguish it from the cell of esProc.

A2: Dynamically piece together an aggregate expression for 24 columns.

A3: Concatenate the aggregate expression into the groups function to calculate the average

of every column.

A4: Convert the result to a single-level sequence and return.

Then, Click Edit > Copy > Excel Copy, at this point, this code can be copied to the clipboard.

Use Excel Add-in

46

SPL

Now, go back to the Excel file, select cell B34, and press Ctrl-V to paste the code in, as shown

below:

This code will return a one-dimensional array, press Ctrl-Enter to fill the returned array values

rightward into every cell of the row in sequence. The final result is as follows:

Notes:

1. When the returned result is a one-dimensional array, the result set will be filled rightward

into the cells in sequence after pressing Ctrl-Enter.

2. If the parameter passed to SPL script is a range of cells (a single row, a single column, multi-

row and multi-column), it will automatically form a two-level sequence. In this case, it can be

converted to a table sequence in the SPL script using E() function;

3. The rule for parameter is the same as that for a one-line code. That is, use ?1 to represent the

first parameter, ?2 to represent the second, and so on.

4. In the SPL script, the Excel cell (or a range of cells), as parameter, is enclosed in single

quotation marks.

Use Excel Add-in

47

SPL

2.3.2 Back to esProc to modify script

In the above example, after the code is copied to Excel, we might close the esProc and didn’t

save the code. In this case, if the code needs to be modified, it is inconvenient to modify it directly

in Excel. To solve this problem, we can use the Excel Paste feature of esProc to copy SPL script

back to esProc for modifying. The specific method is as follows:

Select the whole SPL code in Excel, and press Ctrl-C to copy it to the clipboard. Then open

esProc and click Edit > Paste > Excel Paste, at his point, the original code can be restored to esProc,

as shown below:

Use Excel Add-in

48

SPL

2.3.3 Extremely long SPL script

We have an Employee.xlsx file as follows (the file must be stored under esProc main path):

Use Excel Add-in

49

SPL

We want to query the file to display the following columns only in the query result: EID,

NAME, GENDER, DEPT, SALARY, BIRTHDAY, HIREDATE and STATE, and the display of

column SURNAME is not required. The query condition is shown as below:

In this example, the parameters to be passed to SPL script include B1, B2, D1, D2, F1 and F2.

First, Open the esProc, and define the following parameters:

Then write the script as follows:

Next, click Edit > Copy > Excel Copy to copy the code to clipboard.

Now open the Excel file, select cell A4, and press Ctrl-V to paste the code in, as shown below:

Use Excel Add-in

50

SPL

Due to the restriction on the length of string in Excel expression, extremely-long code will be

automatically split into multiple parts when it is copied to Excel, with each part not longer than 240

characters. If a part of code ends with a slash \, it indicates that the code has not ended, and the next

parameter is still the code.

Finally, press Ctrl-Enter to get the final result:

2.3.4 Invoke SPL script directly

For longer SPL code, you can write the SPL script to a file and invoke it directly in the spl()

function.

For example, in the above example, we save the script file as Example15.splx under esProc

main path, and then write the following expression in cell A4 of Excel:

As you can see from the expression that the syntax for directly invoking the script file is:

=spl("script file name (?n……)",parameter n….)

The number of question marks to be written in parentheses depends on that of parameters in

the script. The corresponding relationship rule with passed-in parameters is the same as that for

directly writing code, that is, ?1 represents the first parameter, ?2 represents the second one, and so

on.

Now press Ctrl-Enter to get the final result:

Using the clipboard

51

SPL

Chapter 3 Using the clipboard

3.1 Basic usage

esProc provides the clipboard() function, which can exchange data with the clipboard.

Let's take the example of “finding the top 3 students in each subject”.

The following is the source data in Excel, where column A contains the student names, and

column B-D contain the scores in math, English and physics respectively.

 A B C D

1 name math english physics

2 lily 97 100 99

3 Joshua 100 99 100

4 Sarah 98 99 96

5 Bertram 94 95 85

6 Paula 91 88 91

7 Sophia 92 81 76

8 Ben 87 80 76

9 Ruth 92 91 87

10 Pag 95 87 87

Calculation objective: find the top 3 students in score in each subject, and append their names

to the end of score column of the corresponding subject.

To achieve the objective, we need to use some features such as the row set TopN, join by

sequence number. However, it’s hard to solve in Excel, we use SPL to make it easy.

Operation steps: i) select the source data area (A1:D10) in Excel; ii) press Ctrl+C to copy it to

system clipboard; iii) open the esProc to write and execute the following script:

Using the clipboard

52

SPL

 A

1 =clipboard().import@t()

2 =A1.top(-3;math).(name)

3 =A1.top(-3;english).(name)

4 =A1.top(-3;physics).(name)

5 =join@p(A2;A3;A4).export()

6 =clipboard(A5)

A1: Read the data from clipboard

A2: Get the names of top 3 students in math

A5: Join the names of these students to form a two-dimensional table and convert it to a string

A6: Write the string to clipboard

In this code, the clipboard() function is used in two ways. When it is called without parameter,

the string in the clipboard will be taken out, such as the cell A1; When it is called using a variable

or cell name as the parameter, the string will be written to the clipboard, such as the clipboard(…)

in A6.

After executing the above script, select the cell B11 in Excel, and press Ctrl+V to copy the data

from clipboard to B11-D13, as shown below:

 A B C D

 … … … …

10 Pag 95 87 87

11 Joshua Lily Joshua

12 Sarah Sarah Lily

13 lily Joshua Sarah

Using the clipboard

53

SPL

3.2 Edit the script at will

When editing and debugging the script, it is very likely to use the copy and paste functions,

which will overwrite the content in the clipboard. Consequently, the returned content will be the

last copied code rather than the source data in Excel while executing the clipboard() the next time.

In this case, the calculation will fail, and you have to go back to Excel to re-copy the data, which

will give you some trouble.

To solve this problem, SPL provides the clipboard@e() function, where the option @e means

that it will always return the data copied from Excel for the first time to the clipboard. Let's have a

try:

In the example in the previous section, suppose that we have copied the data from Excel and

written the script. At this point, if we edit the script, and cut A3 and A4 and paste them into B2 and

B3, A2 will report an error when the script is executed again, because the clipbaord() in A1 gets

wrong data. To avoid this problem, we need to modify the code, and use the just mentioned

clipboard@e() in A1. By doing so, the script will still be executed normally after moving the code.

The edited code is as follows:

 A B C

1 =clipboard@e().import@t()

2 =A1.top(-3;math).(name) =A1.top(-3;english).(name) =A1.top(-3;physics).(name)

3
=join@p(A2;B2;B3).export(

)

4 =clipboard(A3)

A1: Read data from clipboard

A3: Join the names of these students to form a two-dimensional table and convert it to a string

A4: Write the string to clipboard

Using the clipboard

54

SPL

3.3 Multiple result data areas

The clipboard(...) can only return one result, but some complex operations may need to return

multiple results, what should we do?

We can directly copy multiple cell values (or variable values) in the result display area of

esProc to the clipboard separately, and return them to Excel in turn.

Let's take the example of "finding the top 3 students in each subject and the goal of each person

to surpass”.

Calculation objective: 1) append the names of the top 3 students in each subject to the end of

corresponding subject based on the student score table; 2) add a new column "target" to calculate

out three students for everyone, and each of the three students has a total score higher than and is

close to the one to be calculated, as his/her target to surpass. Note that not all students have 3 targets,

and the target students should be concatenated by the greater than sign (>).

Operation steps: i) select the source data area (A1:D10) in Excel; ii) press Ctrl+C to copy to

system’s clipboard; iii) open the esProc to write and execute the following script:

 A B C

1 =clipboard@e().import@t()

2 =A1.top(-3;math).(name) =A1.top(-3;english).(name) =A1.top(-3;physics).(name)

3 =join@p(A2;B2;C2)

4
=A1.derive(sum(math,english,phys

ics):subtotal)

5
=A4.derive(t=subtotal,A4.select(su

btotal>t):beforeMe)

6
=A5.new(beforeMe.top(3;subtotal)

.(name).concat(">"):target)

A1: Get the data from clipboard

A3: Data area 1: top 3 students in each subject

A4: Total score of each student

A5: 3 students whose total score is higher than the one to be calculated

A6: Data area 2: 3 students whose total score is close to the one to be calculated

A3 stores the result data area 1, that is, the top 3 students in score in each subject; A4 stores

the result data area 2, i.e., the targets of each student to surpass. It should also be noted that export

() and clipboard (...) are not needed in the code.

Now we return the results to Excel.

Click on the data area 1, and click the corresponding "copy data" button on the right, as shown

below:

Using the clipboard

55

SPL

Then, select the cell B11 in Excel, and press Ctrl+V to copy the data area 1 to B11-D13, as

shown as below:

 A B C D

1 name math english physics

2 Lily 97 100 99

3 Joshua 100 99 100

4 Sarah 98 99 96

5 Bertram 94 95 85

6 Paula 91 88 91

7 Sophia 92 81 76

8 Ben 87 80 76

9 Ruth 92 91 87

10 Pag 95 87 87

11 Joshua lily Joshua

12 Sarah Sarah lily

13 lily Joshua Sarah

Next, click on the data area 2 in the script, and hold down the Shift key and click the

corresponding "copy data" button on the right. After that, select the cell E1 in Excel, and press

Ctrl+V to paste the data area 2 together with the column name to E1-E10. The result is as follows:

Using the clipboard

56

SPL

 A B C D E

1 name math english physics Target

2 Lily 97 100 99 Joshua

3 Joshua 100 99 100

4 Sarah 98 99 96 lily>Joshua

5 Bertram 94 95 85 Sarah>lily>Joshua

6 Paula 91 88 91 Bertram>Sarah>lily

7 Sophia 92 81 76 Pag>Ruth>Paula

8 Ben 87 80 76 Sophia>Pag>Ruth

9 Ruth 92 91 87 Bertram>Sarah>lily

10 Pag 95 87 87 Ruth>Paula>Bertram

11 Joshua lily Joshua

12 Sarah Sarah lily

13 lily Joshua Sarah

We can use Shift key to control whether the calculation result has a column name.

Using the clipboard

57

SPL

3.4 Multiple source data areas

Having solved the multiple-target problem, it is easy to think of the multiple-source problem.

In practice, the calculation may need to use multiple source data areas in Excel. However, the

clipboard() function only holds the most-recently copied data area. How to solve this problem?

We can copy the clipboard content directly to a cell in the cellset.

The following is an example of "querying the orders that meet the specified conditions".

There are two sheets in Excel, order details and employee list, where the order details table is

as follows:

 A B C D E

1 OrderID Client SellerId Amount OrderDate

2 1 WVF Vip 1 440 2014-11-03

3 2 UFS Com 1 1863 1/1/2015

4 3 SWFR 2 1813 11/1/2014

5 4 JFS Pep 2 671 1/1/2015

6 5 DSG 1 3730 1/1/2015

7 6 JFE 1 1445 1/1/2015

8 7 OLF 3 625 1/1/2015

9 8 PAER 3 2490 1/1/2015

The employee list is as follows:

 A B C D E F G

1 Eid State Dept Name Gender Salary Birthday

2 2 New York Marketing Ashley F 11001 7/19/1980

3 3 New Mexico Sales Rachel F 9000 12/17/1970

4 4 Texas HR Emily F 7000 3/7/1985

5 5 Texas R&D Ashley F 16000 5/13/1975

6 6 California Sales Matthew M 11000 7/7/1984

7 7 Illinois Sales Alexis F 9000 8/16/1972

8 8 California Marketing Megan F 11000 4/19/1979

9 1 Texas HR Victoria F 3000 12/7/1983

Calculation objective: query the order data in the last days, or the order data belonging to the

department list depts. The required columns include the OrderID, OrderDate and Amount in the

order details, and the Name and Dept in the employee list. In these conditions, days is an external

parameter, and you can enter a different value for each execution, for example, entering 30 means

Using the clipboard

58

SPL

querying the order data in the last 30 days; depts is also an external parameter, such as

["Markeding","Finance"]. This calculation objective involves dynamic query and multi-key-value

query. Such queries are hard to be achieved in Excel, but is easy to get it done with SPL.

First, select the data area of "Order Details” sheet in Excel, and copy and paste it to the cell A1

in SPL cellset together with the column names; Likewise, copy the data area of "Employee list"

sheet to cell A2 in SPL cellset. See the figure below:

Note: the paste action should be performed when the cell A1 is in the editing state, otherwise

the content of the clipboard will be filled into a large range of cells, as shown below:

This figure shows a wrong result. Since it occupies a too large area, the code layout will be

affected.

If the operation is correct, only a small part of data is displayed on the appearance of cell A1/A2,

and the complete data will be presented only when clicking A1/A2.This is the unique feature of cell-

style code, which is suitable for copying a large range of data without affecting reading and code

layout.

After copying the two source data areas, edit the script, during which we can run the script

many times and perform the copy and paste actions manually. The final code is as follows:

Using the clipboard

59

SPL

 A B

1 OrderID Client… =A1.import@t()

2 EId State… =A2.import@t()

3 =B1.switch(SellerId,B2:EId)

4
=A3.select(OrderDate>=after(date(now()),d

ays*-1)|| depts.pos(SellerId.Dept))

5
=A4.new(OrderID,OrderDate,Amount,Selle

rId.Name:Name,SellerId.Dept:Dept)

After the calculation is finished, we can use the "copy data" button to copy the calculation

result in A5 back to Excel. It should be noted that the data in the cell A1/A2 should be cleared when

saving the code, otherwise all source data will be saved.

Using the clipboard

60

SPL

More examples

Merge Excel files

61

SPL

Chapter 4 Merge Excel files

In daily work, we often need to merge the data of multiple Excel files together for convenience

of performing various statistical analysis.

4.1 Merge by row - same name and number of columns

The simplest and most common operation is to merge several files with the same name, number

and order of columns by the row. For example:

Before merging:

Fruits.xlsx Meats.xlsx

 and

After merging:

Script:

 A

1 =file("Fruits.xlsx").xlsimport@t()

2 =file("Meats.xlsx").xlsimport@t()

3 =A1|A2

4 =file("Foods.xlsx").xlsexport@t(A3)

Merge Excel files

62

SPL

4.2 Merge by column - same name and number of rows

We often need to merge some Excel files with the same number and name of rows by the

column. For example:

Before merging:

Fruits.xlsx FruitStock.xlsx

 and

After merging:

Script:

 A

1 =file("Fruits.xlsx").xlsimport@t()

2 =file("FruitStock.xlsx").xlsimport@t()

3 =A1.new(Name,UnitPrice,A2(#).Stock,A2(#).MaximumStock)

4 =file("FruitsPriceStock.xlsx").xlsexport@t(A3)

Merge Excel files

63

SPL

4.3 Merge by row - different name and number of columns -

keep all columns

Before merging:

FruitsPriceStock.xlsx MeatsPriceStock.xlsx

After merging:

Script:

 A

1 =file("FruitsPriceStock.xlsx").xlsimport@t()

2 =file("MeatsPriceStock.xlsx").xlsimport@t()

3 =create(${(A1.fname()&A2.fname()).concat@c()})

4 =A3.insert@f(0:A1)

 =A3.insert@f(0:A2)

 =file("FoodsPriceStock.xlsx").xlsexport@t(A3)

A3: All columns need to be kept, so use the union of column names

Merge Excel files

64

SPL

4.4 Merge by row - different name and number of columns -

keep only duplicate columns

Before merging:

FruitsPriceStock.xlsx MeatsPriceStock.xlsx

After merging:

Script:

 A

1 =file("FruitsPriceStock.xlsx").xlsimport@t()

2 =file("MeatsPriceStock.xlsx").xlsimport@t()

3 =create(${(A1.fname()^A2.fname()).concat@c()})

4 =A3.insert@f(0:A1)

 =A3.insert@f(0:A2)

 =file("FoodsPriceStock.xlsx").xlsexport@t(A3)

A3: Only duplicate columns need to be kept, so use the intersection of column names

Merge Excel files

65

SPL

4.5 Merge by row - different name and number of columns -

keep only columns of the first file

Before merging:

FruitsPriceStock.xlsx MeatsPriceStock.xlsx

After merging:

Script:

 A

1 =file("FruitsPriceStock.xlsx").xlsimport@t()

2 =file("MeatsPriceStock.xlsx").xlsimport@t()

3 =A1.insert@f(0:A2)

4 =file("FoodsPriceStock.xlsx").xlsexport@t(A3)

A3: @f option means inserting the data of the same fields in A2 into A1

Merge Excel files

66

SPL

4.6 Merge by column - different name and number of rows -

keep all rows

Before merging:

Meats.xlsx MeatStock.xlsx

 and

After merging:

Script:

 A

1 =file("Meats.xlsx").xlsimport@t()

2 =file("MeatStock.xlsx").xlsimport@t()

3 =join@f(A1:Price,Name;A2:Stock,Name)

4
=A3.new([Price.Name,Stock.Name].ifn():Name,Stock.Stock,Stock.Min

imumStock,Price.UnitPrice)

5 =file("MeatsPriceStock.xlsx").xlsexport@t(A4)

A3: @f option means full join

A4: Bold code means selecting the non-null Name values

Merge Excel files

67

SPL

4.7 Merge by column - different name and number of rows -

keep only duplicate rows

Before merging:

Meats.xlsx MeatStock.xlsx

 and

After merging:

Script:

 A

1 =file("Meats.xlsx").xlsimport@t()

2 =file("MeatStock.xlsx").xlsimport@t()

3 =join(A1:Price,Name;A2:Stock,Name)

4
=A3.new(Stock.Name,Stock.Stock,Stock.MinimumStock,Price.UnitPric

e)

5 =file("MeatsPriceStock.xlsx").xlsexport@t(A4)

A3: Inner join

Merge Excel files

68

SPL

4.8 Merge by column - different name, number and order of

rows - keep only rows of the first file and align the rows

Before merging:

Meats.xlsx MeatStock.xlsx

 and

After merging:

Script:

 A

1 =file("Meats.xlsx").xlsimport@t()

2 =file("MeatStock.xlsx").xlsimport@t()

3 =join@1(A1:Price,Name;A2:Stock,Name)

4
=A3.new([Price.Name,Stock.Name].ifn():Name,Stock.Stock,Stock.

MinimumStock,Price.UnitPrice)

5 =file("MeatsPriceStock.xlsx").xlsexport@t(A4)

A3: @1 option is left join, note that here is the number “1” rather than the letter “l”

A4: ifn() means selecting non-null Name values

Merge Excel files

69

SPL

4.9 Merge by row - convert file names to column values -

unfixed number of files

Before merging:

Apple.xlsx Bread.xlsx Pork.xlsx

After merging:

Script:

 A

1 =directory@p("tmp/*.xlsx")

2
=A1.conj((fn=filename@n(~),T(~).derive(fn:

Commodity)))

3 =file("Amount.xlsx").xlsexport@t(A2)

A1: List all files in the directory, which can be used to process unfixed number of files

Merge Excel files

70

SPL

4.10 Merge by column - convert file names to column names

Before merging:

Apple.xlsx Bread.xlsx Pork.xlsx

After merging:

Script:

 A

1 =directory@p("tmp/*.xlsx")

2 =A1.(filename@n(~))

3 =A1.(T(~))

4
=A3(1).new(Name,Amount:${A2(1)},A3(2)(#).Amount:${A2(2)},A3(3)(#).

Amount:${A2(3)})

5 =file("Amount.xlsx").xlsexport@t(A4)

A1: List all file names in the directory

A2: Obtain file names without extension

A3: Read files as a table sequence

A4: Convert Amount fields of the original table sequence to corresponding file names while

generating a new table sequence

Merge Excel files

71

SPL

4.11 Merge by column - one to many - copy data

Before merging:

Types.xlsx

Foods.xlsx

After merging:

Script:

 A

1 =T("Types.xlsx")

2 =T("Foods.xlsx")

3 =join@f(A1:Type,Type;A2:Food,Type)

4 =A3.new(Food.Type,Food.Name,Food.UnitPrice,Type.Description)

5 =T("FoodsDescription.xlsx",A4)

A3: @f means full join

Merge Excel files

72

SPL

4.12 Merge by column - one to many - leave subsequent rows

empty

Before merging:

Types.xlsx

Foods.xlsx

After merging:

Script:

 A

1 =T("Types.xlsx")

2 =T("Foods.xlsx")

3 =A1.align(A2:Type,Type)

4 =A2.new(Type,Name,UnitPrice,A3(#).Description)

5 =T("FoodsDescription.xlsx",A4)

A3: Align means A1 is aligned to A2 with alignment conditions as Type field of A2 and Type

field of A1; only the first row is aligned if there are duplicate data in A2

Merge Excel files

73

SPL

4.13 Merge and de-duplicate by row - duplicate whole row of

data

If the whole row of data is duplicated when merging by row, only one of the same rows will

be kept during the merge. For example:

Before merging:

 and

As can be seen from the above figures that the whole row of data in Cindy and Lily rows are

duplicated. The merged result is as follows:

Script:

 A

1 =file("Customer1.xlsx").xlsimport@t().sort(Name,Times)

2 =file("Customer2.xlsx").xlsimport@t().sort(Name,Times)

3 =[A1,A2].merge@u(Name,Times)

4 =file("CustomerTimes.xlsx").xlsexport@t(A3)

A1: The original data need to be sorted because of merge

A3: merge@u means the union, using Name and Times as criteria for judging duplication,

therefore, if the whole row is used as the criteria, then all the field names should be added

Merge Excel files

74

SPL

4.14 Merge and de-duplicate by row - duplicate row headers

- keep the data that firstly appear

When merging multiple Excel files by row, we may use only the row headers or one/several

key columns as the criteria for judging whether data are duplicated. As shown in the following

example where Name is used as the criterion for judging duplication:

Before merging:

 and

From the above figures, Cindy and Lily are the duplicate data in the Name column, and the

merged result is as follows:

Script:

 A

1 =file("Customer1.xlsx").xlsimport@t().sort(Name,Times)

2 =file("Customer2.xlsx").xlsimport@t().sort(Name,Times)

3 =[A1,A2].merge@u(Name)

4 =file("CustomerTimes.xlsx").xlsexport@t(A3)

A1: The original data need to be sorted because of merge

A3: merge@u means the union, using Name as criteria for judging duplication

Merge Excel files

75

SPL

4.15 Merge and de-duplicate by row - duplicate row headers

- keep non-null data

Customer3.xlsx Customer4.xlsx

We can see from the above figures that Cindy and Lily rows are duplicated, and the row with

null Quantity value will be removed during the merge. The result is as follows:

Script:

 A

1 =file("Customer3.xlsx").xlsimport@t().select(Quantity!=null)

2 =file("Customer4.xlsx").xlsimport@t().select(Quantity!=null)

3 =A1|A2

4 =file("CustomerQuantity.xlsx").xlsexport@t(A3)

Merge Excel files

76

SPL

4.16 Merge and de-duplicate by row - duplicate row headers

- delete all duplicate data

CustomerTotal.xlsx Customer.xlsx

Since the same key columns will be considered as duplicate data, as a key column, the duplicate

records of Name column in Customer.xlsx need to be deleted from CustomerTotal.xlsx, and the

result after de-duplication is shown as follows:

Script:

 A

1 =file("CustomerTotal.xlsx").xlsimport@t().sort(Name)

2 =file("Customer.xlsx").xlsimport@t().sort(Name)

3 =[A1,A2].merge@d(Name)

4 =file("CustomerTotalNew.xlsx").xlsexport@t(A3)

A1: The original data need to be sorted because of merge

A3: option @d means deleting the data that appear in subsequent table sequence from the first

table sequence

Merge Excel files

77

SPL

4.17 Merge and de-duplicate by column - duplicate column

names - keep data in columns that appear later

Before merging:

CustomerFruits.xlsx CustomerMeats.xlsx

 and

It can be seen from the figures that the Bread columns are duplicated, and we want to keep the

Bread column of the second file and delete the Bread field in the first file after merging. The result

is as follows:

Script:

 A

1 =file("CustomerFruits.xlsx").xlsimport@t()

2 =file("CustomerMeats.xlsx").xlsimport@t()

3 =A1.new(Name,Apple,Strawberry,Peach,A2(#).Mutton,A2(#).Pork,A2(#).Bread,A2(#).Duck)

4 =file("CustomerFoods.xlsx").xlsexport@t(A3)

Merge Excel files

78

SPL

4.18 Merge by row and column simultaneously - keep data

that firstly appear

Before merging:

CustomerFruits1.xlsx CustomerMeats1.xlsx

According to the order of CustomerFruits1.xlsx first and CustomerMeats1.xlsx later, the

duplicate records that appear in CustomerFruits1.xlsx first are kept. The result after merging is:

Script:

 A

1 =file("CustomerFruits1.xlsx").xlsimport@t()

2 =file("CustomerMeats1.xlsx").xlsimport@t()

3 =A1.pivot@r(Name;col,val)

4 =A2.pivot@r(Name;col,val)

5 =(A3|A4).group@1(Name,col)

6 =A5.pivot(Name;col,val)

7 =file("CustomerFoods1.xlsx").xlsexport@t(A6)

A3: Transpose the data of original cross layout to a list

A5: Select the record that appears firstly after grouping

A6: Transpose the data back to cross layout

Merge Excel files

79

SPL

4.19 Format conversion - merge multiple card-style files to

form one row-based table

There are multiple card-style files as follows:

Andrew.Fuller.xlsx：

Janet.Leverling.xlsx：

Margaret.Peacock.xlsx：

Nancy.Davolio.xlsx：

…

Merge Excel files

80

SPL

Now we want to merge them to form one row-based table. The merged format is as follows:

Employee.xlsx：

Script:

 A B

1 =directory@p("Cards/*.*.xlsx")

2 =create(ID,FirstName,LastName,Gender,Title,Birthday,HomePhone,PostalCode,Address)

3
[B1,B2,D2,D1,B3,B4,B5,B7,B6

]

4 for A1 =file(A4).xlsopen()

5 =A3.(B4.xlscell(~))

6 >A2.record(B5)

7 =T("Cards/Employee.xlsx",A2)

A1: List all files named by Name in the Cards directory

A2: Create a result table sequence

A3: List the cell names in the card-style files to be read

A4: Loop through the files in A1

B4: Open the files

B5: Read the data of the cells listed in A3 in the file

B6: Insert the data in B5 into A2

A7: Write the table sequence in A2 to Employee.xlsx

Merge Excel files

81

SPL

4.20 Format conversion - merge multiple primary-sub table

files to form two row-based tables

There are multiple primary-sub tables. Now we want to separate the primary tables to form a

row-based table, and separate the sub-tables to form another row-based table.

An example of the primary-sub table files is as follows:

Orders1.xlsx:

Orders2.xlsx:

Orders3.xlsx:

Merge Excel files

82

SPL

The results after separating are as follows:

Orders.xlsx：

OrderDetails.xlsx：

Script:

 A B

1 =directory@p("Orders/Order*.xlsx").(file(~).xlsopen())

2 =create(OrderID,OrderDate,CustomerID,EmployeeID,Consignee,ShipAddress)

3 =create(OrderID,ProductID,ProductName,UnitPrice,Quantity,Discount,ExtendedPrice)

4 for A1 =A4.xlsimport@t(;1,6).select(ProductID).derive(A4.xlscell("B1"):OrderID)

5

>A2.insert(0,A4.xlscell("B1"):OrderID,A4.xlscell("E1"):OrderDate,A4.xlscell("B2"):Custo

merID,

A4.xlscell("E2"):EmployeeID,A4.xlscell("B3"):Consignee,A4.xlscell("B4"):ShipAddress)

6 >A3.insert@f(0:B4)

7 =T("Orders/Orders.xlsx",A2)

8 =T("Orders/OrderDetails.xlsx",A3)

A1: List the .xlsx files starting with Order in the Orders directory and open them one by one

A2: Create the table sequence of primary tables

A3: Create the table sequence of sub tables

A4: Loop through the files in A1 one by one

B4: Read the data starting from the sixth row in the file, return them to the table sequence, and

add the column OrderID

B5: Read the data of the primary tables in the file one by one, and insert them into A2

B6: Insert the data of sub tables read in B4 into A3

A7: Write the table sequence of primary tables created in A2 to the file Orders.xlsx

A8: Write the table sequence of sub tables created in A3 to the file OrderDetails.xlsx

Merge Excel files

83

SPL

4.21 Aggregate files - same rows and columns

In practical business, sometimes we need to aggregate the data while merging multiple Excel

files, for example:

Apple.xlsx Bread.xlsx Pork.xlsx

Now we need to aggregate the Amount fields to form a column “total amount”, and store it to

a new file. The result is as follows:

Script:

 A

1 =file("Apple.xlsx").xlsimport@t()

2 =file("Bread.xlsx").xlsimport@t()

3 =file("Pork.xlsx").xlsimport@t()

4 =A1.new(Name,Amount+A2(#).Amount+A3(#).Amount:TotalAmount)

5 =file("TotalAmount.xlsx").xlsexport@t(A4)

Merge Excel files

84

SPL

4.22 Aggregate files - merge by row and column

simultaneously - aggregate duplicate records

Before merging:

CustomerFruits1.xlsx CustomerMeats1.xlsx

The final result after aggregating duplicate records and merging is:

Script:

 A

1 =file("CustomerFruits1.xlsx").xlsimport@t()

2 =file("CustomerMeats1.xlsx").xlsimport@t()

3 =A1.pivot@r(Name;col,val)

4 =A2.pivot@r(Name;col,val)

5 =(A3|A4).groups(Name,col;sum(val):val)

6 =A5.pivot(Name;col,val)

7 =file("CustomerFoods2.xlsx").xlsexport@t(A6)

A3: Transpose the data of original cross layout to a list

A5: Grouping and aggregating

A6: Transpose back to cross layout

Merge Excel files

85

SPL

4.23 Aggregate files - aggregate by cell positions - unfixed

number of files

The head office receives the balance sheets from each branch, one of the tables is shown below

(there are 37 rows in total, but only 14 rows are shown in the table):

Now we want to aggregate these balance sheets to generate the balance sheet of head office.

Script:

 A B C

1 =directory@p("zc*.xlsx")

2 =A1.(file(~).xlsopen())

3 =to(4,37) [B,C,E,F] =A3.(B3.(~/A3.~)).conj()

4 for C3 >v=null

5 for A2
>v+=number(B5.xlscell(A4,1

))

6
>A2(1).xlscell(A4,1;string(v

))

7 =file("total.xlsx").xlswrite(A2(1))

A1: List all the to-be-aggregated balance sheets whose file names begin with zc in the folder,

and @p option means listing the full path of the file

A2: Open the files listed in A1 as Excel objects

A3: Specify the row number range of to-be-aggregated numeric cells: 4-37

B3: Specify the column numbers of to-be-aggregated numeric cells: B,C,E,F

C3: Concatenate the row numbers in A3 and column numbers in B3 to form the name for every

to-be-aggregated numeric cell

A4: Loop through all to-be-aggregated numeric cells in C3

B4: Define the aggregation value variable v

B5: Loop through the balance sheet of every branch

Merge Excel files

86

SPL

C5: Read the value of current aggregation cell from the balance sheet of current branch, convert

it to a number and add it to v

B6: Save the added v to the balance sheet of the first branch

A7: Save the balance sheet of the first branch to the balance sheet of head office total.xlsx

Merge Excel files

87

SPL

4.24 Aggregate files - append and aggregate

There is a statistical table for daily purchase and delivery of goods:

There is also a summary table for daily purchase, delivery and inventory of goods:

Now we want to append the daily purchase and delivery data to the summary table to calculate

the latest inventory: inventory of the previous day + purchase - delivery. The aggregation result is:

Script:

 A

1 =T("20200803.xlsx").derive(Inventory)

2 =T("total.xlsx")

3 =A1.run(Inventory=A2.select@z1(Goods==A1.Goods).Inventory+Purchase-Delivery)

4 =file("total.xlsx").xlsexport@a(A3)

A1: Read the current day data to be appended and aggregated and add a new “Inventory column.

Merge Excel files

88

SPL

A2: Read the data of summary table

A3: Loop through every row in A1 so that the value of Inventory is the Inventory of the last good

in summary table plus the current Purchase and minus the current Delivery. @z1 option means

selecting the first row that satisfies the condition from back to front

A4: Append and save the result of A3 to the file total.xlsx, and @a option means appending

the data

Merge Excel files

89

SPL

4.25 Aggregate files - cumulate and aggregate

There are statistical tables for the daily sales of some goods in current month, one table per

day. Now we want to add the cumulative value to the column “monthly cumulative sales” of these

files.

Before merging:

20220101.xlsx

20220102.xlsx

20220103.xlsx

Files of other dates are omitted.

After merging:

20220101.xlsx

20220102.xlsx

Merge Excel files

90

SPL

20220103.xlsx

Files of other dates are omitted.

Script:

 A B

1 2022-01-01 2022-01-31

2 =periods(A1,B1).(string(~,"yyyyMMdd")+".xlsx")

3 =A2.(T(~))

4 >A3(1).run(MonthlyCumulativeSales=DailySales)

5 for A3.to(2,)

=A5.run(MonthlyCumulativeSa

les=DailySales+A3(#A5).select

@1(Name==A5.Name). Monthl

yCumulativeSales)

6 =A3.run(T(A2(#),~))

Merge Excel files

91

SPL

4.26 Aggregate files - insert aggregation sheet

A shopping mall complies a purchase summary table of key customers for 12 months of the

year in the format shown below:

Jan.xlsx：

Feb.xlsx：

Files of other months are omitted.

Now we want to aggregate these Excel files to different sheets of one Excel file with file name

as the sheet name, and insert an aggregation sheet named Total on the home page.

The aggregated Excel is as follows:

Script:

 A B

1 [Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec]

2 =A1.(T(~+".xlsx"))

3
=A2.conj().groups(CustomerName;sum(Apple):Apple,

sum(Banana):Banana,sum(Peach):Peach,sum(Strawberry):Strawberry)

4 =T("Total.xlsx",A3;"Total")

5 for A2 =file("Total.xlsx").xlsexport@at(A5;A1(#A5))

A3: Aggregate data

A4: Export A3 to the first sheet of Excel, and name it as Total

B5: Append the original data to the subsequent sheets of Excel and name them with file name;

@a option means appending the data

Split Excel file

92

SPL

Chapter 5 Split Excel file

5.1 Split by row - by number of rows

We have an order table file Orders.xls, and part of the data is shown in the figure below. The

first row contains the column titles, and the data start from the second row with one piece of data

per row.

Now we need to split this file into several small files by the specified number of rows. The

split result is shown as follows:

Orders1.xlsx:

Orders2.xlsx:

Split Excel file

93

SPL

Orders3.xlsx:

Script:

 A B

1 =T@c("Orders.xlsx")

2 for A1,300 =T("Orders"/#A2/".xlsx",A2)

A1: Read the data of Orders.xlsx file as a cursor, the @c option means reading as a cursor.

A2: Loop through the data in A1, fetching 300 pieces of data each time.

B2: Take Orders + loop sequence number as the file name, and write the data in A2 to the file.

Split Excel file

94

SPL

5.2 Split by row - group by data - split into multiple Sheets

We have an order table file orders. xlsx, and part of the data is shown in the figure below. The

first row contains the column titles, and the data start from the second row with one piece of data

per row.

Now we want to group the data in this table by Shippers, and store each grouped data to one

separate Sheet, with the Shippers name as the Sheet name. The split results are as follows:

Ordersm.xlsx:

Script:

 A B

1 =T("orders.xlsx") =A1.group(Shippers)

2 for B1 =file("Ordersm.xlsx").xlsexport@ta(A2;A2.Shippers)

A1: Read the data in orders.xlsx.

Split Excel file

95

SPL

B1: Group by Shippers.

A2: Loop each Shippers group.

B2: Take the Shippers name as the Sheet name, and write the grouped data in A2 to the Sheet.

Split Excel file

96

SPL

5.3 Split by row - group by data - split into multiple files

We have an order table file orders.xlsx, and part of the data is shown in the figure below. The

first row contains the column titles, and the data start from the second row with one piece of data

per row.

Now we want to group the data in this table by Shippers, and store each grouped data to one

separate Excel file, with the Shippers name as the file name. The split results are as follows:

Speedy Express.xlsx:

United Package.xlsx:

Federal Shipping.xlsx:

Split Excel file

97

SPL

Script:

 A B

1 =T("orders.xlsx") =A1.group(Shippers)

2 for B1 =T(A2.Shippers+".xlsx",A2)

A1: Read the data in orders.xlsx.

B1: Group by Shippers.

A2: Loop each Shippers group.

B2: Take the Shippers name as the file name, and write the grouped data in A2 to the file.

Split Excel file

98

SPL

5.4 Split by row - segment by data (by filtering condition)

There is an order detail data file OrderDetailExtended.xlsx as follows:

Now we want to split the data of this table into three segments by the value in the column of

ExtendedPrice (<500, 500-2000, >2000), and save the segmented data as three Excel files. The split

results are as follows:

lt500.xlsx:

Mt2000.xlsx:

Split Excel file

99

SPL

500-2000.xlsx:

Script:

 A B

1 =T("OrderDetailsExtended.xlsx")

2
=A1.group(if(ExtendedPrice<500:"lt500.xlsx",ExtendedPrice>2000:"mt2000.xlsx";"500-2

000.xlsx"):fileName;~:data)

3 for A2 =T(A3.fileName,A3.data)

A1: Read the data in OrderDetailsExtended.xlsx.

A2: Divide A1 into three groups by the value in the column of ExtendedPrice (i.e., value less

than 500, value greater than 2000, and value between 500 and 2000), and take such values as the

name of corresponding file.

A3: Loop by A2.

B3: Write the group data in each row to the corresponding file.

Split Excel file

100

SPL

5.5 Split by row - generate one card per row

There is an employee information table Employee.xlsx, and part of the data is as follows:

Now we want to split the data to generate one card-style table for each employee in the

following format, and the empty card-style file is named Card.xlsx:

The generated card-style file is named after employee name, such as:

Andrew.Fuller.xlsx：

Janet.Leverling.xlsx：

Margaret.Peacock.xlsx：

Split Excel file

101

SPL

Nancy.Davolio.xlsx：

…

Script:

 A B C

1 =T("Employee.xlsx") [B1,B2,D2,D1,B3,B4,B5,B7,B6]

2 for A1 =file("Card.xlsx").xlsopen()

3 for C1 =B2.xlscell(B3,1;A2.field(#B3))

4 =file(A2.FirstName+"."+A2.LastName+".xlsx").xlswrite(B2)

A1: Read the data of employee information table.

C1: Define the sequence of cell names where each column of the employee information table

is to be written on the card.

A2: Loop through every employee.

B2: Open the empty card-style file as an Excel object.

B3: Loop through each cell to be filled in.

C3: Fill the content of the corresponding column number in the current employee A2 into the

current to-be-written cell.

B4: Store the Excel object of B2 to the Excel file named after the employee's name.

Split Excel file

102

SPL

5.6 Split by row - split multiple cards to make one card

generate one file

There is a multi-card style table Cards.xlsx as follows:

Now we need to split it to make one card generate one file, with person's name as the file name.

The splitting results are as follows:

Andrew.Fuller.xlsx：

Janet.Leverling.xlsx：

Split Excel file

103

SPL

Margaret.Peacock.xlsx：

Nancy.Davolio.xlsx：

…

Operation steps:

1. Create an empty card-style file Card.xlsx, as the initial file format:

2. Script:

Split Excel file

104

SPL

 A B C

1 =file("Card.xlsx").xlsopen()

2 =file("Cards.xlsx").xlsopen()

3 [B,D,B,D,B,B,B,B] [1,1,2,2,3,4,5,6,7]

4 =A3.(~/B3(#))

5 for =A3.(~/B3(#)).(A2.xlscell(~))

6 if B5(1)=="" break

7 for A4
=A1.xlscell(B7,1;B5(#B7

))

8
=file(B5(3)+"."+B5(4)+".xlsx

").xlswrite(A1)

9 >B3=B3.(~+8)

A1: Open the empty card-style template Card.xlsx.

A2: Open the multi-card style table Cards.xlsx.

A3: List the column number of the cells to be read.

B3: List the row number of the cells to be read.

A4: Piece together the cell names of the first card.

A5: Loop.

B5: Piece together the cell names of the current card, and read the data in it.

B6: Exit loop if cards have been read.

B7: Loop through A4 and write the data in B5 into A1 one by one.

B8: Write A1 to the file named after the current card.

B9: Plus 8 after row number, because one card has 8 rows.

Split Excel file

105

SPL

5.7 Format conversion - split tables with primary-sub

relationship into cards

There are two tables with primary-sub relationship as follows:

Orders.xlsx：

OrderDetails.xlsx：

Now we need to associate them by OrderID, and generate one card with primary-sub

relationship for each order, with OrderID as the file name, as shown below:

Orders10248.xlsx:

Orders10249.xlsx:

Split Excel file

106

SPL

Orders10250.xlsx:

Operation steps:

1. Create an empty card-style template.

Order.xlsx

2. Script:

Split Excel file

107

SPL

 A B

1 =T("Orders/Orders.xlsx")

2 =T("Orders/OrderDetails.xlsx")

3 =A2.align@a(A1:OrderID,OrderID)

4 =file("Orders/Order.xlsx").xlsopen()

5 =A2.alter(;OrderID)

6 for A1

>A4.xlscell("B1",1;A6.OrderID),A4.xlscell("E1",1;A6.OrderDate),A4.xlscell("

B2",1;A6.CustomerID), A4.xlscell("E2",1;A6.EmployeeID),A4.xlscell("B3",1;

A6.Consignee),A4.xlscell("B4",1;A6.ShipAddress)

7 =A4.xlscell("A7",1;A3(#A6))

8 =file("Orders/Order"+A6.OrderID+".xlsx").xlswrite(A4)

A1: Read the data of Orders/Orders.xlsx.

A2: Read the data of Orders/OrderDetails.xlsx.

A3: Align A2 to A1, @a means many-to-one, and the associated column is OrderID.

A4: Open the empty template file Orders/Order.xlsx.

A5: Delete the column OrderID from A2, because this column does not need to be displayed

in the sub table when outputting.

A6: Loop by primary table A1.

B6: Write the primary table data to the corresponding position of the A4 template.

B7: Write the sub-table data at the corresponding position in A3 to the cell starting with A7 of

A4 template.

B8: Output the final generated primary-sub card-style table to the file named with the order

number.

Split Excel file

108

SPL

5.8 Split by column - by column - take column name as file

name

There is a file Amount.xlsx as shown below:

This is an amount summary table for certain products purchased by some key customers. Now

we need to split it by product, and save each product as a file with the product name as the file name

and Amount as the column name. The split results are as follows:

Apple.xlsx：

Bread.xlsx：

Split Excel file

109

SPL

Pork.xlsx：

Script:

 A B

1 =T("Amount.xlsx") =A1.fname()\"Name"

2 for B1 =A1.new(Name,${A2}:Amount)

3 =T(A2+".xlsx",B2)

Split Excel file

110

SPL

5.9 Split by column - by column - take column name as Sheet

name

There is a file Amount.xlsx as shown below:

This is an amount summary table for certain products purchased by some key customers. Now

we need to split it by product, and save each product to a Sheet with the product name as the Sheet

name and Amount as the column name. The split results are as follows:

Script:

 A B

1 =T("Amount.xlsx") =A1.fname()\"Name"

2 for B1 =A1.new(Name,${A2}:Amount)

3 =file("Amounts.xlsx").xlsexport@ta(B2;A2)

Split Excel file

111

SPL

5.10 Split by column - merge duplicate rows after splitting

There is a product data table ProductCategories.xls:

This table contains the category information of products, such as CategoryID, CategoryName,

Description, etc. Now we need to separate the category information columns to form one Categories

table, and take the remaining product columns as the Products table. Since there are many products

under one category field, and many of them are duplicate after splitting, deduplication needs to be

performed.

The results after splitting are shown as below:

Categories.xlsx：

Products.xlsx：

Split Excel file

112

SPL

Script:

 A

1 =T("ProductCategories.xlsx")

2 =A1.groups(CategoryID,CategoryName,Description)

3
=A1.new(CategoryID,ProductID,ProductName,QuantityPerUnit,UnitPrice,UnitsInStock,Unit

sOnOrder,ReorderLevel)

4 =T("Categories.xlsx",A2)

5 =T("Products.xlsx",A3)

Split Excel file

113

SPL

5.11 Split multi-Sheet file into multiple files - unfixed

number of Sheets

There is a multi-Sheet file Amount.xlsx as follows:

The number of Sheets is not fixed, now we need to separate each Sheet to form one file, and

take the Sheet name as the file name. The results after splitting are shown as below:

Apple.xlsx： Bread.xlsx： Pork.xlsx：

Script:

 A B

1 =file("Amounts.xlsx").xlsopen()

2 for A1 =A1.xlsimport@t(;A2.stname)

3 =T(A2.stname+".xlsx",B2)

Searching, positioning and filtering

114

SPL

Chapter 6 Searching, positioning and

filtering

6.1 Search for the nth, the nth from last

Here below is a sales statistical table:

Now we want to find out the product ranked tenth by sales and its sales, and the product ranked

tenth from last by sales and its sales. The results are as follows:

The 10th:

=spl("=E(?1).sort(ProductSales:-1)(10)",A1:C78)

The 10th from last:

=spl("=E(?1).sort(ProductSales:-1).m(-10)",A1:C78)

Searching, positioning and filtering

115

SPL

6.2 Search for top N, last N

Here below is a sales statistical table:

Now we want to find out the products ranked in the top 10 by sales and their sales, and the last

10 products and their sales. The results are shown as below:

Top 10:

=spl("=E(?1).sort(ProductSales:-1).to(10)",A1:C78)

Last 10:

=spl("=E(?1).sort(ProductSales:-1).to(-10)",A1:C78)

Searching, positioning and filtering

116

SPL

Searching, positioning and filtering

117

SPL

6.3 Filter by position

We have a statistical table for daily sales of January 2022:

Now we want to filter out the sales on even-numbered days:

=spl("=E(?1).select(#%2==0)",A1:B32)

The symbol # represents the current row number.

Searching, positioning and filtering

118

SPL

6.4 Search for position of a certain value, take the value by

position

We have a statistical table for daily sales of January 2022:

Now we want to find out the day with the largest sales. Enter the following in cell C2:

=spl("=E(?1).pmax(Sales)",A1:B32)

The returned result is 12.

Next, find out the sales of 5 days before and after the day with the largest sales:

=spl("=E(?1).to(?2-5,?2+5)",A1:B32,C2)

Searching, positioning and filtering

119

SPL

6.5 Search for row number that satisfies the condition

We have a statistical table for daily sales of January 2022:

The following code is to find out the date with daily sales greater than 1,000:

=spl("=E(?1).pselect@a(Sales>1000)",A1:B32)

pselect@a() means returning the sequence number of all rows that meet the condition, and

pselect() means returning only the sequence number of the first row that meets the condition.

Searching, positioning and filtering

120

SPL

6.6 Search for row that satisfies the condition

We have a statistical table for daily sales of January 2022:

The following code is to find out the data with daily sales greater than 1,000:

=spl("=E(?1).select(Sales>1000)",A1:B32)

Searching, positioning and filtering

121

SPL

6.7 Filter by multiple conditions

There is an employee information table:

Now we want to find out the employees who are Female and were born before 1970:

=spl("=E(?1).select(Gender==""Female"" && Birthday<""1970-01-01"")",A1:O32)

Searching, positioning and filtering

122

SPL

6.8 Search by adjacent rows

We have a statistical table for daily sales of January 2022:

Now we want to find out the data of date where the previous and next day's sales are both more

than 500 lower than that of the date:

=spl("=E(?1).select(Sales[-1]<Sales-500 && Sales[1]<Sales-500)",A1:B32)

Sales[-1] represents the value of the column Sales of the previous row, and Sales[1]

represents the value of the column Sales of the next row.

Searching, positioning and filtering

123

SPL

6.9 Take values of adjacent rows in same group (search &

filter within adjacent intervals)

There is an Excel table:

Now we want to add two columns, PreviousDailySales and NextDailySales, to fill in the sales

of current product on the previous selling day and the next selling day, respectively.

Analysis of the problem: The data is sorted by date first, and then by product. If the rows with

same product are regarded as a group, the problem will change to taking the values of the previous

row and the next row in the same group. The difficulty of the problem is how to find the previous

and next rows in the same group without changing the order of rows.

There are two ideas to solve this problem (fill in the code in cell D1):

1. Search and filter in adjacent intervals: directly search forward and backward without

changing the order of data. Once the row of the first product with the same name is found, it is the

sales of the previous selling day/next selling day.

Searching, positioning and filtering

124

SPL

 A

1 =E('A1:C2401')

2
=A1.derive(~[:-1].select@1z(ProductName==A1.ProductName).Sales:PreviousDailySales,

~[1:].select@1(ProductName==A1.ProductName).Sales:NextDailySales)

3 return A2.new(PreviousDailySales,NextDailySales)

A2: ~[:-1] represents the set of all rows from the beginning to the previous row, and ~[1:]

represents the set of all rows from the next row to the end.

2. Take the value of adjacent rows within the same group: group the data by product, and

take the value of the previous row/the next row within the group directly, which is the sales of the

previous selling day/next selling day.

 A

1 =E('A1:C2401').derive(:PreviousDailySales,:NextDailySales)

2
=A1.group(ProductName).run(~.run(PreviousDailySales=Sales[-1], NextDailySales=Sales[

1]))

3 return A1.new(PreviousDailySales,NextDailySales)

A2: Sales[-1] represents the value of column Sales of the previous row, Sales[1] represents

the value of column Sales of the next row.

Searching, positioning and filtering

125

SPL

6.10 Filter by group’s aggregation value

We have an Excel table for the daily sales of products:

We want to find out the date when the total daily sales amount exceeds 300,000:

=spl("=E(?1).groups(OrderDate;sum(Sales):TotalSales).select(TotalSales>300000)",A1:C2401)

Searching, positioning and filtering

126

SPL

6.11 Use group’s aggregation value when filtering

We have an aggregation table for the sales of grouped products:

Now we want to find out the product whose sales is greater than the average in its group:

=spl("=E(?1).group(CategoryName).((a=~.avg(ProductSales),~.select(ProductSales>a))).conj()",A

1:C78)

To solve this problem, we can first calculate group's average sales and assign it to the temporary

variable a, and then use ProductSales>a as the filter condition to filter the group. Since it is a two-

step calculation, an extra layer of parentheses is required.

Searching, positioning and filtering

127

SPL

6.12 Filter by maximum or minimum value within a group

(find out one for each group)

We have an Excel table for the daily sales of products:

The code below is to find out the product with the largest daily sales and its sales:

=spl("=E(?1).group(OrderDate).(~.maxp(Sales))",A1:C2401)

Searching, positioning and filtering

128

SPL

6.13 Find out interval in which a certain condition occurs

continuously

We have a statistical table for daily sales:

Find out the date when the sales rises for three consecutive days or more:

 A

1 =0

2 =E('A1:B32').group@o(if(Sales>Sales[-1], A1,A1=A1+1)).select(~.len()>=3).conj()

A2: Take A1 as a temporary value. A1 remains unchanged when the sales rises, and plus 1

when the sales falls, and then group according to this temporary value. In this way, the rows of

consecutive rise are put into the same group.

Calculate cell value and aggregation value

129

SPL

Chapter 7 Calculate cell value and

aggregation value

7.1 Simple column-wise aggregation

Here below is a data table:

To count the following information for each class: total number of students, the average score

of individual total score, the code is as follows:

=spl("=E(?1).groups(Class;count(1):TotalNumber,avg(Math+English+PE):AverageScore)",A1:E1

1)

Calculate cell value and aggregation value

130

SPL

7.2 Conditional aggregation

Here below is a data table:

To count the following information for each class: number of students with score above 90, the

number of failed students, and the average score after removing the highest and lowest scores, the

code is as follows:

=spl("=E(?1).group(Class).new(Class,~.count(Score>=90):'ScoreAbove90',~.count(Score<60):Fai

led,~.sort(Score).m(2:-2).avg(Score):AverageScore)", A1:C19)

where m(2:-2) represents the set of members from the second to penultimate member of a

sequence.

Calculate cell value and aggregation value

131

SPL

7.3 Fill aggregation value in the first row of the same group

of data

Here below is a data table:

 Now we want to count the following information for each class: number of students with score

above 90, number of failed students, and the average score after removing the highest and lowest

scores, and then fill the results in the first row of each class (calculate in cell D1):

 A

1 =E('A1:C19').derive(:ScoreAbove90,:Failed,:AverageScore)

2
=A1.group(Class).run(~(1).ScoreAbove90=~.select(Score>=90).len(),~(1).Failed=~.select(S

core<60).len(),~(1).AverageScore=~.sort(Score).m(2:-2).avg(Score))

3 return A1.new(ScoreAbove90,Failed,AverageScore)

Calculate cell value and aggregation value

132

SPL

Calculate cell value and aggregation value

133

SPL

7.4 Split aggregation value and fill them in detail rows

We have an annual and monthly water consumption data table for water meter, and part of the

data is shown as below:

We also have a statistical table for annual water leakage amount:

Now we want to assign the annual water leakage amount to the Water leakage column of the

first table according to the proportion of monthly water consumption in the total water consumption

of the year (calculate in cell D1):

Calculate cell value and aggregation value

134

SPL

 A

1 =E('A1:C44').derive(:'Water leakage')

2 =E('Sheet2!A1:B5')

3 =A1.group(Year)

4
=A3.run(a=A2.select@1(Year==A3.Year).'Water leakage',s=~.sum(Water),~.run('Water lea

kage'=Water*a/s))

5 return A1.new('Water leakage')

A3: Group the data in A1 by Year.

A4: Loop through every group in A3; the variable a is the leakage loss of the corresponding

year selected from A2; the variable s is the total Water consumption in this year, and then loop

through all rows in this year; assign the Water leakage column as: Water*a/s.

A5: return to A1.

Calculate cell value and aggregation value

135

SPL

7.5 Simple accumulation

There is a sales data table:

We want to calculate the cumulative sales volume and fill them in column C. First calculate in

cell C2:

=spl("=?1+?2",B2,C1)

Then drag C2 down to every relevant row:

Calculate cell value and aggregation value

136

SPL

7.6 Accumulate data in each group

There is a sales data table:

To calculate the cumulative sales of each person, the code is as follows (calculate in cell D1):

=spl("=E(?1).new(cum(~~+Sales;Name):'Cumulative Sales')",A1:C22)

cum(x; Gi,…) is an iteration function, used in the loop function; x is an expression containing

~~; ~~ represents the cumulative value; Gi is an ordered column, and group by Gi and accumulate

within the group.

Calculate cell value and aggregation value

137

SPL

7.7 Filter by Accumulation

There is a sales data table:

To count the date when the sales volume of each person reaches 50,000, the code is as follows:

=spl("=E(?1).group(Name).new(Name,~.select@1(Sales[:0].sum()>50000).Date:Date)",A1:C22)

Calculate cell value and aggregation value

138

SPL

7.8 Early-terminated accumulation

Here below is an inventory data table:

We’ve known that the quantity of this product sold today is 50, and want to calculate the new

inventory data (subtract the inventory quantity in turn according to the order in the table until 50 are

subtracted in total, and keep only the rows with inventory quantity greater than 0):

 A

1 =E('A1:D18')

2 =A1.iterate((a=min(Quantity,~~),Quantity-=a,~~-a),50,~~==0)

3 return A1.select(Quantity>0)

A2: Use iterate to loop the iteration, the ~~ in the loop represents the result of the last iteration,

and its initial value is set to 50. Take the minimum value of the quantity of current row and ~~, and

assign the value to the variable a; subtract a from the quantity of current row, and take ~~-a as the

result of this iteration; When the iteration result ~~ is 0, terminate the iteration.

A3: Select the rows with quantity>0 in A1 after iteration.

Calculate cell value and aggregation value

139

SPL

7.9 Accumulation for continuous occurrence of a certain

condition

There is a statistical table for daily sales:

We want to add a column to the right to calculate the cumulative days of consecutive rising

(calculate in cell C1):

 A

1 =0

2 return E('A1:B32').new(if(Sales>Sales[-1], A1=A1+1,A1=0):RiseDayCount)

A2: Take A1 as a temporary value. A1 plus 1 when the sales volume rises, and assign A1 to 0

when the sales volume falls.

Calculate cell value and aggregation value

140

SPL

Calculate cell value and aggregation value

141

SPL

7.10 Calculate using adjacent row/interval when data of the

same group is continuous (link relative ratio and YOY)

Here below is an annual and quarterly sales data table:

Now we want to calculate LRR and YOY (calculate in cell D1):

 A

1 =E('A1:C21')

2 =A1.(Sales-Sales[-1])

3 =A1.group(Year)

4 =A3.(~.(Sales-A3.~[-1](#).Sales)).conj()

5 return A2.new(~:LinkRelative,A4(#):YOY)

A2: Calculate LRR, [-1] represents the previous row.

A3: Group by Year.

A4: Calculate YOY. The symbol ~ represents the current member in the loop function, and #

represents the sequence number of current member in loop function.

Calculate cell value and aggregation value

142

SPL

Calculate cell value and aggregation value

143

SPL

7.11 Calculate using adjacent row/interval when data of the

same group is discontinuous (LRR/YOY in the case of

missing data)

Here below is an annual and quarterly sales data table:

In this table, the data of the first quarter in 2020 is missing. When the data of this quarter is

used to calculate LRR, skip this quarter directly, and use the data of the fourth quarter in 2019; when

the data of this quarter is used to calculate YOY, regard it as zero (calculate in the cell D1):

=spl("=E(?1).new(Sales-Sales[-1]:LinkRelative,Sales-~[:-1].select@z1(Year==get(1,Year)-1 &&

Quarter==get(1,Quarter)).Sales:YOY)",A1:C20)

Where, get(1,Year) means taking the value in the column Year of current member of

previous-layer function.

~[:-1] represents the set from the first member to the previous member.

Calculate cell value and aggregation value

144

SPL

Calculate cell value and aggregation value

145

SPL

7.12 Merge data of the same group

Here below is an annual and quarterly sales data table:

In this table, column A is ordered and has duplicate values. Now we want to clear the data from

all rows in the same group except the first row.

=spl("=E(?1).group(#1).(~.run(if(#==1,,#1=null))).conj()",A1:C21)

Calculate cell value and aggregation value

146

SPL

7.13 String concatenation and aggregation

There is a data table:

Now we want to concatenate the ID numbers for each group of names by | to form a string, and

put the result in column C (calculate in cell C1):

=spl("=E(?1).new(cum(~~+""|""+ID;Name):IDs)",A1:B13)

Calculate cell value and aggregation value

147

SPL

7.14 Calculate proportion using aggregation information of

data of the same group

Here below is an annual and quarterly sales data table:

The following code is to calculate the proportion of each quarterly sales to the total sales of the

year (calculate in cell D1):

=spl("=E(?1).group(Year).((a=~.sum(Sales),~.(Sales/a))).conj().new(~:Proportion)",A1:C21)

Calculate cell value and aggregation value

148

SPL

7.15 Generate number in each group

Here below is the student data table:

Now we want to create a student ID for every student. The student ID should be: class number

+ student's serial number in the class, and the serial number should be two-digit (calculate in cell

C1):

=spl("=E(?1).group(Class).(~.(Class+string(#,""00""))).conj().new(~:ID)",A1:B21)

Operation on sets and judgment of belongingness

149

SPL

Chapter 8 Operation on sets and judgment

of belongingness

8.1 Intersection, union and difference in the case of simple

members - two sets

The following table lists the top 10 products by sales in January and February:

Find out the products that make the top 10 in both January and February:

=spl("=?1^?2",B2:B11,C2:C11)

Find out the products that make the top 10 once or more:

=spl("=?1&?2",B2:B11,C2:C11)

Operation on sets and judgment of belongingness

150

SPL

Find out the products that make the top 10 in January but fail to make the top 10 in February:

=spl("=?1\?2",B2:B11,C2:C11)

Find out the products that make the top 10 in February but fail to make the top 10 in January:

=spl("=?2\?1",B2:B11,C2:C11)

Operation on sets and judgment of belongingness

151

SPL

8.2 Intersection, union and difference in the case of simple

members - multiple sets

The following table lists the top 10 products by sales in the first couple of months of the year

(the number of months will increase over time):

Find out the products that make the top 10 in every month of these months:

=spl("=transpose(?1).isect()",B2:E11)

Find out the products that make the top 10 once or more:

=spl("=transpose(?1).union()",B2:E11)

The calculation result is not given here because it is very long.

Find out the products that make the top 10 in January but fail to make the top 10 in any of other

months:

=spl("=transpose(?1).diff()",B2:E11)

Operation on sets and judgment of belongingness

152

SPL

8.3 Intersection, union and difference in the case of row-

based data - two sets - by key column

The following tables list the sales data of the top 10 products by sales in January and February:

Find out the sales data of the products that make the top 10 in both January and February (the

ranking and sales in January are required only):

=spl("=[E(?1),E(?2)].merge@oi(ProductName)",Jan!A1:C11,Feb!A1:C11)

Find out the sales data of products that make the top 10 once or more (the ranking and sales

that appear for the first time are required only):

Operation on sets and judgment of belongingness

153

SPL

=spl("=[E(?1),E(?2)].merge@ou(ProductName)",Jan!A1:C11,Feb!A1:C11)

Find out the sales data of products that make the top 10 in January but fail to make the top 10

in February:

=spl("=[E(?1),E(?2)].merge@od(ProductName)",Jan!A1:C11,Feb!A1:C11)

Operation on sets and judgment of belongingness

154

SPL

8.4 Intersection, union and difference in the case of row-

based data - two sets - by whole row

The following tables list the data of the products and salespersons that make the top 10 by sales

in January and February:

Find out the data of products and salespersons that make the top 10 in both January & February.

=spl("=[E(?1),E(?2)].merge@oi()",Jan!B1:C11,Feb!B1:C11)

Find out the data of the products and salespersons that make the top 10 once or more.

Operation on sets and judgment of belongingness

155

SPL

=spl("=[E(?1),E(?2)].merge@ou()",Jan!B1:C11,Feb!B1:C11)

Find out the data of products and salespersons that make the top 10 in January but fail to make

the top 10 in February:

=spl("=[E(?1),E(?2)].merge@od()",Jan!B1:C11,Feb!B1:C11)

Notes:

The merge() function without parameter means the whole row will be taken as the matching

criterion, and the merge() function with parameter means the parameter value will be taken as the

matching criterion.

Operation on sets and judgment of belongingness

156

SPL

8.5 Intersection, union and difference in the case of row-

based data - multiple sets

There is a file top10Sales.xlsx, which lists the sales data of the top 10 products by sales in

the first couple of months of the year (the number of months will increase over time):

Operation on sets and judgment of belongingness

157

SPL

Find out the products that make the top 10 in every month of these months:

 A

1 =file("top10Sales.xlsx").xlsopen()

2 =A1.(A1.xlsimport@t(;stname)).merge@oi(ProductName)

Find out the products that make the top 10 once or more:

 A

1 =file("top10Sales.xlsx").xlsopen()

2 =A1.(A1.xlsimport@t(;stname)).merge@ou(ProductName)

Operation on sets and judgment of belongingness

158

SPL

Find out the products that make the top 10 in January but fail to make the top 10 in any of other

months:

 A

1 =file("top10Sales.xlsx").xlsopen()

2 =A1.(A1.xlsimport@t(;stname)).merge@od(ProductName)

Operation on sets and judgment of belongingness

159

SPL

8.6 Judge equality of sets when order is considered

Here below is a monthly sales ranking table for the first half of the year:

Find out the month whose products ranking by sales is the same with the products ranking by

total sales in the first half of the year:

 A

1 =E('A1:D19')

2 =A1.groups(ProductName;sum(Sales):Sales).sort(Sales:-1).(ProductName)

3 return A1.group@o(Month).select(~.(ProductName)==A2).id(Month)

A1: Convert the passed-in data to a two-dimensional table sequence.

A2: Calculate the products ranking by total sales in the first half of the year.

A3: Find out the month whose products ranking by sales is the same with the products ranking

by total sales in the first half of the year through the operation for judgement of the equality of sets.

Result: May

Operation on sets and judgment of belongingness

160

SPL

8.7 Judge belongingness of sets when order is considered

Here below is a monthly sales ranking table for the first quarter:

Find out the month that contains the top 3 products by total sales in the first quarter (same

ranking order is required):

 A

1 =E('A1:D16')

2 =A1.groups(ProductName;sum(Sales):Sales).sort(Sales:-1).(ProductName)(to(3))

3 return A1.group@o(Month).select(~.(ProductName).pos@c(A2)!=null).id(Month)

A1: Convert the passed-in data to a two-dimensional table sequence.

A2: Calculate the top 3 products by total sales in the first quarter.

A3: When the pos@c() judges the belongingness of sets, the order of members should be the

same.

Result: Jan

Operation on sets and judgment of belongingness

161

SPL

8.8 Judge equality of sets when order is ignored

Here below is a monthly sales ranking table for the first quarter:

Find out the month that contains the top 3 products by total sales in the first quarter:

 A

1 =E('A1:D10')

2 =A1.groups(ProductName;sum(Sales):Sales).sort(Sales:-1).(ProductName)(to(3))

3 return A1.group@o(Month).select(~.(ProductName).pos(A2)!=null).id(Month)

A1: Convert the passed-in data to a two-dimensional table sequence.

A2: Calculate the top 3 products by total sales in the first quarter.

A3: When the number of set members is the same, using the pos function can judge the equality

of sets in the case that the order is ignored.

Result: Mar

Operation on sets and judgment of belongingness

162

SPL

8.9 Judging belongingness of sets when order is ignored

Here below is a monthly sales ranking table for the first quarter:

Find out the month that contains the top 3 products by total sales in the first quarter:

 A

1 =E('A1:D16')

2 =A1.groups(ProductName;sum(Sales):Sales).sort(Sales:-1).(ProductName)(to(3))

3 return A1.group@o(Month).select(~.(ProductName).pos(A2)!=null).id(Month)

A1: Convert the passed-in data to a two-dimensional table sequence.

A2: Calculate the top 3 products by total sales in the first quarter.

A3: Find out the month that contains the top 3 products in the first quarter through the operation

for judgement of belongingness of sets.

Result: Jan, Mar

Judgment, counting and deleting of duplicate data

163

SPL

Chapter 9 Judgment, counting and deleting

of duplicate data

9.1 Judge duplication of simple members

Here below a data table of names:

Judge whether there are duplicate names, if so, fill in 1 in corresponding Dup field, otherwise

fill in 0. Enter the formula in cell B2:

=spl("=if(?1.conj().select(~==?2).count()>1,1,0)",A$2:A$6,A2)

Then drag B2 down to every relevant row:

Judgment, counting and deleting of duplicate data

164

SPL

9.2 Judge duplication of row-based data - by key column

Here below is a personnel data table:

Judge whether there are duplicate data, if so, fill in 1 in corresponding Dup field, otherwise fill

in 0 (the judging basis is that the data in the Name field are the same). Enter the formula in cell E2:

=spl("=if(?1.conj().select(~==?2).count()>1,1,0)",B$2:B$7,B2)

Then drag E2 down to every relevant row:

Judgment, counting and deleting of duplicate data

165

SPL

9.3 Judge duplication of row-based data - by whole row

Here below is a personnel data table:

Judge whether there are duplicate whole-row data, if so, fill in 1 in corresponding Dup field,

otherwise fill in 0. Calculate in the cell E1:

 A

1 =E('A1:D7').derive(:Dup)

2 =A1.group(ID,Name,Gender,Birthday).run(a=if(~.len()>1,1,0),~.run(Dup=a))

3 return A1.new(Dup)

Judgment, counting and deleting of duplicate data

166

SPL

9.4 Count number of repetitions of simple members

Here below a data table of names:

To count the number of duplicate names, enter the formula in cell B2:

=spl("=?1.conj().select(~==?2).count()",A$2:A$6,A2)

Then drag B2 down to every relevant row:

Judgment, counting and deleting of duplicate data

167

SPL

9.5 Count number of repetitions of row-based data - by key

column

Here below is a personnel data table:

To count the number of duplicate data (the judging basis is that the data in the Name field are

the same), enter the formula in the cell E2:

=spl("=?1.conj().select(~==?2).count()",B$2:B$7,B2)

Then drag E2 down to every relevant row:

Judgment, counting and deleting of duplicate data

168

SPL

9.6 Count number of repetitions of row-based data - by

whole row

Here below is a personnel data table:

To count the number of duplicate whole-row data, calculate in the cell E1:

 A

1 =E('A1:D7').derive(:Num)

2 =A1.group(ID,Name,Gender,Birthday).run(a=~.len(),~.run(Num=a))

3 return A1.new(Num)

Judgment, counting and deleting of duplicate data

169

SPL

9.7 Deduplication of simple data

There is a data table:

Deduplicate the data:

=spl("=?1.id()",A2:A17)

Judgment, counting and deleting of duplicate data

170

SPL

9.8 Deduplication of row-based data - by key column

There is a data table:

Find out the data that are not duplicate and the first duplicate data in the Name column:

=spl("=E(?1).group(Name).(~(1))",A1:D7)

Judgment, counting and deleting of duplicate data

171

SPL

9.9 Deduplication of row-based data - by whole row

There is a data table:

Find out the whole-row data that are not duplicate and the first duplicate whole-row data:

=spl("=E(?1).group(ID,Name,Gender,Birthday).(~(1))",A1:D7)

Judgment, counting and deleting of duplicate data

172

SPL

9.10 Deduplication of simple data - keeping order

There is a data table:

Duplicate the data, and keep the original order:

=spl("=?1.id@u()",A2:A17)

Judgment, counting and deleting of duplicate data

173

SPL

9.11 Deduplication of row-based data - by key column -

keeping order

There is a data table:

Find out the data that are not duplicate and the first duplicate data in the Name column:

=spl("=E(?1).group@u(Name).(~(1))",A1:D7)

Judgment, counting and deleting of duplicate data

174

SPL

9.12 Deduplication of row-based data - by whole row -

keeping order

There is a data table:

Find out the whole-row data that are not duplicate, and the first duplicate whole-row data:

=spl("=E(?1).group@u(ID,Name,Gender,Birthday).(~(1))",A1:D7)

Judgment, counting and deleting of duplicate data

175

SPL

9.13 Filter by number of repetitions

The following table lists the sales data of the top 5 products by monthly sales:

Find out the data of products that appears three or more times:

=spl("=E(?1).group(ProductName).select(~.len()>2).conj()",A1:D21)

Judgment, counting and deleting of duplicate data

176

SPL

9.14 Delete data that can be paired

Here below is a data table:

Delete the rows that have the same data in the fields of ID, Name and Item, and whose positive

and negative values in Value field can be completely offset.

=spl("=E(?1).group(ID,Name,Item).select(~.sum(Value)!=0).conj()",A1:D10)

Ranking and Sorting

177

SPL

Chapter 10 Ranking and Sorting

10.1 Sorting of simple members

Here below is a data table:

Sort in ascending order:

=spl("=?.sort()",A1:A10)

Sort in descending order:

=spl("=?.sort(~:-1)",A1:A10)

Ranking and Sorting

178

SPL

10.2 Sorting of row-based data

Here below is a data table:

Sort in ascending order by TotalScore:

=spl("=E(?).sort(TotalScore)",A1:C12)

Sort in descending order by TotalScore:

=spl("=E(?).sort(TotalScore:-1)",A1:C12)

Ranking and Sorting

179

SPL

10.3 Sorting of row-based data - by combination of multiple

columns

Here below is a data table:

Sort in reverse order by the order combination of three columns (Maths, English, PE):

=spl("=E(?).sort(Maths:-1,English:-1,PE:-1)",A1:E12)

Ranking and Sorting

180

SPL

10.4 Sorting of row-based data - by expression

Here below is a data table:

Sort in reverse order by the sum of three columns, Maths, English and PE:

=spl("=E(?).sort(Maths+English+PE:-1)",A1:E12)

Ranking and Sorting

181

SPL

10.5 Sort in group

Here below is a data table:

Sort the data (in ascending order) by Class, (in descending order) by Score:

=spl("=E(?1).sort(Class,Maths:-1)",A1:C12)

Ranking and Sorting

182

SPL

10.6 Sort by specified order

Here below is a data table:

Please add one column Score on the right of the column Name in the Student sheet, and fill in

the data of column Score of the Score sheet in the added column. Calculate in cell C1 of Student

sheet:

 A

1 =E('A1:B17')

2 return E('Score!A1:B12').align(A1:Name,Name).new(~.Score)

Ranking and Sorting

183

SPL

10.7 Sort by specified order in which duplicate values exist

There is a data table, and some index numbers are stored in the column Header1. In these index

numbers, there may be duplicate values, as shown in the red boxes in the figure below, there are

multiple 101s:

Fill in the data of Header2 and Header3 of the data sheet in columns B and C of the Target

sheet respectively. The first 101 of Target sheet corresponds to the data row of the first 101 of data

sheet, and the second 101 corresponds to the data row of the second 101. Since there isn’t the third

101 in data sheet, the third 101 in Target sheet will correspond to null value. Calculate in cell B1:

 A

1 =E('A1:A10').derive(:key)

2 =E('data!A1:C9').derive(:key)

3 =A1.group(Header1).run(~.run(key=Header1/"_"/#))

4 =A2.group(Header1).run(~.run(key=Header1/"_"/#))

5 return A2.align(A1:key,key).new(~.Header2,~.Header3)

A1: Convert the passed-in data to a two-dimensional table sequence and add one column key

to generate the key value used for alignment.

A2: Convert the passed-in data to a two-dimensional table sequence and add one column key

to generate the key value used for alignment.

A3: Group A1 by Header1, loop through every group, and loop through every row in the

group. Set the key value to: Header1 + underline + its serial number in the group.

A4: Same as A3.

A5: Align the keys in A1 by the order of the keys in A2, to generate a new data set to return.

Ranking and Sorting

184

SPL

Ranking and Sorting

185

SPL

10.8 Shuffle the data

Here below is a data table:

Shuffle the data of each row:

=spl("=clipboard(E(?1.(~.sort(rand()))))",A1:D5)

Shuffle the data of each column:

=spl("=clipboard(E(transpose(transpose(?1).(~.sort(rand())))))",A1:D5)

Shuffle the data of the whole area:

=spl("=clipboard(E(?1.conj().sort(rand()).group(#%5)))",A1:D5)

Notes:

Only when Ctrl-Enter is pressed will the set returned by SPL() be filled in multiple cells, while

other methods that trigger the calculation will only fill in the first member. In this example, the data

are shuffled in a random way, and each calculation result is different, therefore, in this code, the

result is copied to the clipboard, which can be pasted into the target cell after calculation.

Ranking and Sorting

186

SPL

10.9 Ranking of simple members

Here below is a data table:

To calculate the ranking of members (in descending order), and fill in the results in

corresponding cell of column B, enter in cell B1:

=spl("=?1.conj().rank@z(?2)",A$1:A$10,A1)

Drag B1 down to every relevant row:

Ranking and Sorting

187

SPL

10.10 Ranking of row-based data

Here below is a data table:

To calculate the ranking of students by TotalScore (in descending order), and fill in the results

in corresponding cell of column D, enter in cell D2:

=spl("=?1.conj().rank@z(?2)",C$2:C$12,C2)

Drag D2 down to every relevant row:

Ranking and Sorting

188

SPL

10.11 Ranking of row-based data - by combination of

multiple columns

Here below is a data table:

To rank (in descending order) by the order combination of three columns Maths, English, and

PE, enter in cell F2:

=spl("=?1.rank@z(?2.conj())",C$2:E$12,C2:E2)

Drag F2 down to every relevant row:

Ranking and Sorting

189

SPL

10.12 Ranking of row-based data - by expression

Here below is a data table:

To calculate the ranking (in descending order) by the sum of three columns Maths, English and

PE, enter in cell F2:

=spl("=E(?1).(Maths+English+PE).rank@z(?2)",C$1:E$12,C2+D2+E2)

Drag F2 down to every relevant row:

Ranking and Sorting

190

SPL

10.13 Concatenate members with the same ranking

Here below is a data table:

Rank the students by math score, and concatenate the names of students having the same score

with comma:

=spl("=E(?1).group(Maths).(~.(Name).concat@c()).rvs().new(#:Rank,~:Name)",A1:B12)

Ranking and Sorting

191

SPL

10.14 Rank in group

Here below is a data table:

To calculate the ranking of students in the class, and fill in the results in corresponding cell of

column E, enter in cell E1:

 A

1 =E('B1:D12').derive(:RankInClass)

2 =A1.group(Class).run(a=~.ranks@z(Maths),~.run(RankInClass=a(#)))

3 return A1.new(RankInClass)

A1: Convert the data to a two-dimensional table sequence, and add one column RankInClass.

A2: Group by class, calculate ranking within each group, and assign the value to RankInClass.

A3: Return RankInClass.

Grouping and aggregating

192

SPL

Chapter 11 Grouping and aggregating

11.1 Simple grouping

Here below is a data table:

We want to group by Class, and calculate the average score of each subject of each class:

=spl("=E(?1).groups(Class;avg(Maths):Maths,avg(English):English,avg(PE):PE)",A1:E12)

Grouping and aggregating

193

SPL

11.2 Group by combination of multiple columns

Here below is a data table:

We want to group by Year and Quarter, and count the total sales of each quarter:

=spl("=E(?1).groups(Year,Quarter;sum(Sales):Sales)",A1:D25)

Grouping and aggregating

194

SPL

11.3 Group by expression

Here below is a data table:

We want to group and aggregate by the first two digits of ID, and calculate the total sales of

each group:

=spl("=E(?1).groups(left(ID,2):ID;sum(Sales):Sales)",A1:C25)

Grouping and aggregating

195

SPL

11.4 Group by segment

Here below is a data table:

We want to count the number of people in each of the following score segments respectively:

below 50, 50-60, 60-70, 70-80, 80-90 and above 90.

=spl("=E(?1).groups(if(Score<50:""<50"",Score>=50 && Score<60:""50-60"",Score>=60 &&

Score<70:""60-70"",Score>=70 && Score<80:""70-80"",Score>=80 && Score<90:""80-

90"";"">=90""):Score;count(1):Num)",A1:C25)

Grouping and aggregating

196

SPL

11.5 Enumeration grouping

Here below is a data table:

The task is to put Apple, Banana and Orange in a group and name it Fruits, put Pork, Beef and

Mutton in a group and name it Meats, and put the rest of the goods in a group and name it Others,

and then count the total sales of each group:

=spl("=E(?1).groups(if([""Apple"",""Banana"",""Orange""].pos(Goods)!=null:""Fruits"",

[""Pork"",""Beef"",""Mutton""].pos(Goods)!=null:""Meats""; ""Others""):Goods;

sum(Sales):Sales)", A1:B14)

Grouping and aggregating

197

SPL

11.6 Put every N members in a group

Here below is a data table:

We want to put every 4 rows in order in a group, and calculate the serial number of group and

the sum of the values in the second column of each group:

=spl("=E@b(?1).groups((#-1)\4+1:ID;sum(#2):Total)",A1:B12)

To put every 4 rows in a group, we can group by the result of (#-1)\4+1, that is, subtract 1

from row number # to get the difference, divide the difference by 4 to get the quotient, and add 1 to

the quotient. After grouping, we can count the sum of the values in the second column of each group.

Grouping and aggregating

198

SPL

11.7 Convert one-dimensional array to two-dimensional

array

Here below is a data table:

We want to convert the data to a 5-column & N-row table with header, in the order of horizontal

arrangement first and then vertical arrangement. To achieve this, enter the formula in cell B2:

=spl("=?1.conj().group((#-1)\5)",A1:A26)

Subtract 1 from serial number # to get the difference, and divide the difference by 5 to get the

quotient. Grouping by this quotient can put every 5 numbers in a group.

Grouping and aggregating

199

SPL

11.8 Take adjacent data as grouping criteria

Here below is a data table:

The task is to group the data in the first column, and calculate the sum of the values in the

second column of each group. Grouping criteria: when there is a difference of 5 or more between

the current data and previous one, create a new group:

=spl("=E@b(?1).group@i(#1-#1[-1]>=5).new(#1:ID,~.sum(#2):Total)",A1:B12)

Grouping and aggregating

200

SPL

11.9 Group when meeting blank row

Here below is a data table:

The data consist of multiple segments, and each segment includes N consecutive rows and 1

blank row. Now we want to calculate the sum of the values of each segment, and fill in the result in

the cell of the blank row, column C, and keep the rest cells in column C null. To achieve this, enter

the formula in cell C1:

=spl("=?1.conj().group@i(~[-1]==null).([null]*(~.len()-1)|~.sum()).conj().new(~:Total)",B2:B21)

When the previous member is null, create a new group.

Loop through every group, calculate the sum of the values of each group, and make up null

values in the cells above the sum cell of each group (the number of nulls should be the number of

members minus 1).

Grouping and aggregating

201

SPL

11.10 Group when meeting non-null value

We have an annual and monthly water-consumption data table, and the year is filled in only on

the left of the first month of each year. Part of the data is shown as below:

The task is to calculate the total water consumption of each year. To achieve this, enter the

formula in cell D1:

=spl("=E(?1).derive(:TotalWater).group@i(Year!=null).run(~(1).TotalWater=~.sum(Water)).conj(

).new(TotalWater)",A1:C20)

When meeting a non-null value in the column Year, create a new group. Option @i means

creating a new group when the condition is satisfied. Assign the sum(Water) of the current group

to the first row of each group, and create a new data set and take out the TotalWater.

Grouping and aggregating

202

SPL

11.11 Group by interval of data values

Here below is a data table:

The task is to put every 5 days in a group, and calculate the average of the values in each group:

 A

1 =E('A1:B19')

2 =A1.Date

3 =A1.group@i(if(Date-A2==5,(A2=Date,true),false))

4 =A3.new(Date,~.avg(Value):Avg)

A2: Let the start variable of loop be the Date of the first row.

A3: Put every 5 days in a group.

A4: Calculate the average of the values in each group, and the Date means the first date of

each group.

Grouping and aggregating

203

SPL

11.12 Concatenate data within group into text

Here below is a data table:

The task is to group by Dept, and concatenate the names within the same group into the same

row:

=spl("=E(?1).group(Dept;~.(Name).concat@c():Name)",A1:B12)

Grouping and aggregating

204

SPL

11.13 Auto-aggregating in the case of multiple columns -

unfixed number

Here below is a data table:

In this table, the number of value columns is unfixed, and may vary from time to time.

Currently, there are four columns C~F, and we want to calculate the aggregation value of each

column, and fill in the result in the blank cell below each group of data:

 A B

1 ='A1:F15'.group@i(~[-1](1)==null)

2 for A1 =A2.select(~(1))

3 =B2|[A2.m(-1)(to(2))|transpose(B2.(~.to(3,))).(~.sum())]

4 >B1|=B3

5 return B1

A1: Group whenever the previous cell in the first column is null.

A2: Loop through every group.

B2: Filter the aggregation row.

B3: Append aggregation result to B2.

B4: Append the result of each group to B1.

Association and comparison

205

SPL

Chapter 12 Association and comparison

12.1 Use formulas to handle association

Here below is an Excel file book1.xlsx, which stores employees’ meal data. Part of the data is

as follows:

The task is to calculate the values in column C according to the following pricing rules:

Since there are only a few rows in this table, we can enumerate them in the formula directly.

Enter in cell C2:

=spl("=case(?1,""breakfast"":10,""lunch"":15,""supper"":20)",B2)

Association and comparison

206

SPL

Then drag C2 down to every relevant row:

Association and comparison

207

SPL

12.2 Single column association

Here below is a data table that stores the sales details:

The following table stores the salespersons information:

Now we want to calculate the total sales of male and female salespersons respectively:

Association and comparison

208

SPL

 A

1 =E('Sheet1!A1:C25')

2 =E('Sheet2!A1:B13')

3 =A1.join(Name,A2:Name,Gender)

4 =A3.groups(Gender;sum(Sales):Sales)

Association and comparison

209

SPL

12.3 Multiple columns association

Here below is a data table:

The task is to compare the values of M, N and O of each row in Sheet1 with the corresponding

values in Sheet2. When the row that has the same values is found, return the House value of this

row, and fill in this value in column E of Sheet1. To achieve this, enter the following formula in cell

E2:

=spl("=E(?1).keys(M,N,O).find([?2,?3,?4]).House",Sheet2!A$1:D$9,B2,C2,D2)

Then drag E2 down to every relevant row:

Convert the data of Sheet2 to a table sequence, and specify M, N and O as key column;

Association and comparison

210

SPL

Loop through each row of Sheet2, use the values of M, N and O to correspond the values of

key columns of Sheet2 to search for the row with the same values. When such row is found, return

the House value of the row.

Association and comparison

211

SPL

12.4 Reference multi-column data from association table

Here below is a table that lists the freight charging standards:

The following table stores the shipping order information:

Now we want to calculate the actual freight based on the first table. To achieve this, write in

cell D2:

 A

1 =spl("=E(?1).select@1(City==?2)

2 =A1.First1KG+A1.Add1KG*(ceil(?3)-1)",Sheet1!A$1:C$9,B2,C2)

Association and comparison

212

SPL

Drag D2 down to every relevant row:

Association and comparison

213

SPL

12.5 Use formulas to handle interval association

Here below is a data table:

We want to calculate the price value in column B according to the quantity in column A, and

the calculation should follow the rule: different quantity intervals correspond to different prices, as

shown in the table below:

Enter in cell B2:

=spl("=[15,13.75,13,12.5]([30,50,100,300,500].pseg@r(?1))",A2)

Association and comparison

214

SPL

Then drag B2 down to every relevant row:

The idea of the calculation is to use the pseg function to calculate which interval the quantity

value belongs to [30, 50, 100, 300, 500], and then take out the price of the corresponding interval

from the price sequence [15, 13.75, 13, 12.5] and return.

Association and comparison

215

SPL

12.6 Use association table to handle interval association

Example 1:

Here below is a data table:

The task is to calculate the values in column B of Sheet2 according to the rule: search Sheet1

with the quantity value of Sheet2, if the value is greater than StartQuantity and less than or equal to

EndQuantity of a certain row, return the price of this row. To achieve this task, enter in cell B2:

=spl("=E(?1).segp@r(StartQuantity,?2).Price",Sheet1!A$1:C$5,A2)

Association and comparison

216

SPL

Then drag B2 down to every relevant row:

The idea of the calculation is to use the segp function to query which segment number of

interval formed by StartQuantity of Sheet1 the quantity value is in, and then take the price of the

row corresponding to the segment number and return. The option @r means forming a left-open

and right-closed interval. For example, the number 50 should be counted in the interval where the

first row is located.

Example 2:

Here below is a car charging data table:

Association and comparison

217

SPL

The following table lists the electricity price data at different charging time intervals:

The task is to calculate the values in Price column of Sheet3 according to the rule: search

Sheet4 for the time interval where the hour number of Starttime is located, and take the price. To

achieve this, enter in cell E2:

=spl("=a=E@b(?1),a(3).array().to(2,)(a(1).array().to(2,).pseg(?2))", Sheet4!A$1:F$3, HOUR(B2))

Association and comparison

218

SPL

Drag E2 down to every relevant row:

Association and comparison

219

SPL

The idea of calculation is to use the StartHour sequence starting from the 1st row and the 2nd

column of Sheet4 to form the time intervals, and search for the interval where the hour number of

Starttime of Sheet3 is located, and take the price in the corresponding 3rd row of Sheet4 and return.

Association and comparison

220

SPL

12.7 Use a two-dimensional association table

We have a scoring data table for children’s height. In this table, the cells A1, B1 and C1 are

different age ranges, and below them are the height data (cm); column D lists the scoring data.

The following table stores the children’s information:

Now we want to find out the scoring data in Sheet2 according to Age and Height in Sheet1,

and fill in the results in column D. To achieve this, enter in cell D2:

 A

1 =E('Sheet2!A$1:D$5').rvs()

2 =(A1.fno()-1).(int(A1.fname(~).split("-")(1))).pseg('B2')

3 =A1.segp(~.field(A2),'C2').Score

Then drag D2 down to every relevant row:

Association and comparison

221

SPL

A1: Convert the data of Sheet2 to a table sequence, and use the rvs function to reverse the

order to make the heigh data arranged in ascending order

A2: Take out the column names of A1, and remove the last column name; Split each column

name with a minus sign, and then convert the first one to an integer to form a sequence, i.e., [6,8,10].

In this sequence, find out the segment number where the current Age is located.

A3: Use the Height value to search the sequence interval formed by the values of A2-th column

of A1 to find its corresponding row, and take the score of this row and return

Association and comparison

222

SPL

12.8 Use interval range to perform retroactive searching of

association table

Here below is a data table:

The task is to calculate the values in column D of Sheet1 according to the following

requirements:

1. The ID column of Sheet2 is the same as that of Sheet1.

2. When the first criterion is met, judge whether the Num of Sheet2 falls into the interval

between start and end of Sheet1.

3. When the above two criteria are met at the same time, the value in Sheet1 is the

corresponding value in Sheet2.

Enter in cell D2:

=spl("=E(?1).select@1(ID==?2 && Num>?3 && Num

<=?4).Value",Sheet2!A$1:C$5,A2,B2,C2)

Then drag D2 down to every relevant row:

Association and comparison

223

SPL

Association and comparison

224

SPL

12.9 Associate multiple rows of data

Here below is a data table:

The task is to associate the bid and cid of Sheet1 with the corresponding bid and cid of Sheet2,

and calculate the values of aid in Sheet2. Enter the formula in cell C2:

 A

1 =E('Sheet1!A$1:C$15').group(bid,cid;~.(aid):aid)

2 =E('A1:B6')

3 =A1.align(A2:[bid,cid],[bid,cid])

4 =A3.(aid)

A1: Convert the data of Sheet1 to a table sequence, and then group by bid and cid, with

multiple aids under each group

A3: Associate the bid and cid of Sheet1 with the corresponding bid and cid of Sheet2

Association and comparison

225

SPL

A4: Return the aids in the result

12.10 Associate with detail table

Here below is a data table that stores the customer order information:

The following data table stores the order details:

Example 1:

Find out the customer order information with a total order amount greater than 1000:

Association and comparison

226

SPL

 A

1 =E('Sheet1!A1:D8')

2 =E('Sheet2!A1:E17')

3 =A2.groups(OrderID;sum(Price*Quantity):Amount).select(Amount>1000)

4 =A1.join@i(OrderID,A3:OrderID)

A3: Group A2 by OrderID; calculate the total order Amount of each group; select the group

with Amount>1000

A4: Join A1 and A3 on OrderID. The option @i means discarding the unmatched row in A1

Example 2:

Find out the order details in the north area.

Script:

 A

1 =E('Sheet1!A1:D8')

2 =E('Sheet2!A1:E17')

3 =A1.select(Area=="north")

4 =A2.join@i(OrderID,A3:OrderID)

A3: Find out the order information in the north area from A1

A4: Join A2 and A3 on OrderID. The option @i means discarding the unmatched rows in A2

Association and comparison

227

SPL

12.11 Find changes through comparison

When comparing the contents of the key columns of two two-dimensional tables, we can first

read the table data as a table sequence, and then take out the values of key column to form a set, and

finally perform the operation on the two sets to obtain the result.

Here below is a data table, which stores the sales order data of 2018 and 2019 in Sheet1 and

Sheet2 respectively, these two sheets have the same column structure:

Association and comparison

228

SPL

Example 1: Find the similarities

Find out the CustomerID and ProductID that the same product is purchased in both years:

=spl("=[E(?1),E(?2)].merge@io()",Y2018!B1:C406,Y2019!B1:C1060)

Association and comparison

229

SPL

Merge the data of two years, @i means returning the common rows of the two years.

Example 2: Find the differences

Find out the order information of the new customers in 2019:

 A

1 =E('Y2018!A1:E406')

2 =E('Y2019!A1:E1060')

3 =A2.id(CustomerID)\A1.id(CustomerID)

4 =A2.select(A3.contain(CustomerID))

A3: Subtract the CustomerIDs of 2018 from all CustomerIDs of 2019 to get new

CustomerIDs

A4: Filter out the orders of new CustomerIDs from 2019 order data table

Association and comparison

230

SPL

Example 3: Find all lost CustomerIDs in 2019:

=spl("=E(?1)\E(?2)",'Y2018'!B1:B406,'Y2019'!B1:B1060)

Association and comparison

231

SPL

12.12 Dynamic association operation

The sheets of the following Excel file are divided into three types, of which Sheet A is the basic

table, part of the data is as follows:

Sheet B1\B2…Bn are the association table, and all of these sheets have the same format, and

have the same columns (Interval1, Interval2 and Interval3) as Sheet A. The figure below shows the

data of Sheet B1:

Sheet C is used to describe the Join type between A and B1\B2..Bn. There are totally 3 types

of joins, of which the cross Join represents Cartesian product, and both the leftJoinBig and

leftJoinSmall represent the left association, and the associated columns are Interval1 and Interval2

respectively. See the following figure for details:

Calculation objective: associate sheet A with Sheet B1\B2..Bn according to the join type in

sheet C, take the column Interva1 from sheet A, and take other columns from sheet B, and finally

form a new two-dimensional table.

Let’s take the above sheet B as an example (actually each B should be different), if

JoinType==crossJoin, the association result should be:

Association and comparison

232

SPL

If joinType==leftJoinBig, the association result should be:

If joinType==leftJoinSmall, the association result should be:

Since this calculation needs to loop through sheet C and outputs multiple two-dimensional

tables, it can only be implemented by using script instead of formula.

Script:

Association and comparison

233

SPL

 A B

1 =file("data.xlsx").xlsopen()

2 =A1.xlsimport@t(;"C")

3 =tableA=A1.xlsimport@t(;"A")

4 for A2 =tableB=A1.xlsimport@t(;A4.Table)

5

=case(A4.JoinType,

"crossJoin":xjoin(tableA:A;tableB:B),

"leftJoinBig":xjoin@1 (tableA:A;tableB:B,A.Interval1==

Interval1),

"leftJoinSmall":xjoin@1(tableA:A;tableB:B,A.Interval1=

=Interval1 && A.Interval2==Interval2))

6
=B5.new(A.Interval1,B.Interval2,B.Interval3,B.Type,B.V

alue1,B.Value2,B.Value3)

7 =file(A4.Table+A4.JoinType+".xlsx").xlsexport@t(B6)

The script function case can judge the Join type, xjoin calculates the Cartesian product, and

@1 represents the left association.

Conversion between rows and columns

234

SPL

Chapter 13 Conversion between rows and

columns

13.1 Row-to-column conversion for fixed columns

Here below is a data table:

Now we want to convert the table to the form as shown in the figure below, and list the scores

in the order of Chinese, Maths and English:

Script:

=spl("=E(?1).pivot(ID,Name;Subject,Score;

""Chinese"",""Maths"",""English"")",Sheet1!A1:D13)

Perform the row-to-column conversion based on columns ID and Name. The values in the

Subject column are transferred and used as the new column names, the values in the Score column

are transferred and used as the values in the new columns, and the new column names are arranged

in the order of "Chinese", "Maths", "English".

Conversion between rows and columns

235

SPL

13.2 Convert row-based table to crosstab

The following data table records the daily sales of products:

Now we want to create a crosstab, with the SaleDate as the left header of crosstab, the Products

as the upper headers of crosstab, like this:

Script:

=spl("=E(?1).pivot(SaleDate;Product,Amount)",Sheet1!A1:C16)

Perform the row-to-column conversion based on SaleDate column, the values in the Product

column are transferred and used as the new column names, and the values in the Amount column

are transferred and used as the values in new columns.

Conversion between rows and columns

236

SPL

13.3 Convert crosstab to row-based table

We have a crosstab that stores product’s style data (width and length) and price information.

The width data are stored in the first row, and the length data are stored in the first column:

Now we want to convert this table to a row-based table, and show product style as width*length,

like this:

Script:

=spl("=E(?1).pivot@r(Style:Length;Width,Price).select(Price).sort(Width,Length).new(Width/""*

""/Length:Style,Price)",Sheet1!A1:K16)

Perform the column-to-row conversion based on Style column, and give it a new name Length;

the option @r means column-to-row conversion; the original column names are transferred and

Conversion between rows and columns

237

SPL

used as the values in the new column Width, and the original values in the cross cells are transferred

and used as the values in the new column Price.

After that, select the rows whose value in column Price is nonnull, and sort them by Width

and Length; create a new dataset, with “Width*Length” as the values in the new column Style,

and take the Price column as the price column of the new dataset.

Conversion between rows and columns

238

SPL

13.4 Interconversion of upper layer groups for rows and

columns - column-to-row

Here below is a data table:

The first row is the country code of each piece of data, the second row is other column names

of each piece of data, and the third row is the value corresponding to each column. Now we want to

rearrange the data into standard row-based data. The result is as follows:

Script:

 A

1 =transpose('Sheet1!A1:I3').run(if(~(1)==null,~(1)=~[-1](1)))

2 =create(Country,Cate,Value)

3 >A1.(A2.record(~))

4 =A2.pivot(Country;Cate,Value)

A1: Transpose the sequence of sequences, and complement the countries in the first column

A2: Create an empty table sequence (Country,Cate,Value)

A3: Fill in the data of A1 in the table sequence one by one

A4: Use the pivot function to perform row-to-column conversion

Conversion between rows and columns

239

SPL

13.5 Interconversion of upper layer groups for rows and

columns - row-to-column

Here below is a data table:

The first row is the column name, including the Country column and other information columns.

Now we want to rearrange the data into the following form:

Script:

 A

1 =E('Sheet2!A1:D4').pivot@r(Country;Cate,Value;Meat,Vegetable,Oil)

2 =A1.group(Country).(~.run(Country=if(#==1,Country,""))).conj()

3 =transpose(A2.(#1|#2|#3))

A1: Perform the column-to-row conversion, and take the column names Meat, Vegetable and

Oil as the values of Cate, and take the values in original Meat, Vegetable and Oil columns as the

data in the Value column

A2: Group by Country, for each group, set the country values of non-first row as empty and

then concatenate
A3: Merge the columns to become a sequence of sequences, transpose the sequence of

sequences and return

Conversion between rows and columns

240

SPL

13.6 Put data in a group horizontally into columns

Here below is a data table:

The task is to rank the students by score, and arrange the names with the same score into the

same row. The result is as follows:

Script:

=spl("=E(?1).group(-Score).([#]|~.(Name))",Sheet1!A1:B25)

Group by Score and sort in reverse order; loop through each group, and merge the group

number and the name of students in the group into a sequence.

Conversion between rows and columns

241

SPL

13.7 Re-group or sort when filling grouped data into

columns

There is a data table. In this table, the products with the same name may have multiple colors.

The task is to convert the data to the form as shown below, that is, arrange each type of product

in one row, and then list the Name and Color of each product in turn.

Script:

=spl("=E(?1).group(Type).(~.group(Name)).((~.Type|~.(Name|~.(Color))).conj@r())",Sheet1!A1:

C8)

First group by Type, and then group by Name in each group.

Loop through groups of Type. First take Type, and then add the sequence composed of Name

and Color of each group in its Name subgroups, and finally use conj to concatenate the sequence.

Option @r means recursive calculating until all members are no longer a sequence.

Conversion between rows and columns

242

SPL

13.8 Convert certain columns of the same row, as group

members, to multiple rows

Here below is a data table:

Now we want to convert it to a row-based table, like this:

Script:

=spl("=E(?1).pivot@r(Names,Sales;Weekday,Day).new(Names,Sales,Day).select(Day)",Sheet1!A

1:G5)

Perform the row-column transposition on the data. The option @r means column-to-row. The

Names and Sales columns are used as the base column, other column names are transferred and

used as the values in the Weekday column, and the values in other columns are transferred and

used as the values in column Day.

Select the columns Names, Sales and Day, and the rows whose value in column Day is nonnull.

Conversion between rows and columns

243

SPL

13.9 Convert group formed by every N columns to multiple

rows

Here below is a data table. In this table, the data are stored from the second column, and every

two columns form a pair of columns (i.e., each even column and each odd column except the first

column form a pair of columns, such as the second and third columns). There are a total of 4 pairs

of such columns:

Now we want to group by the first column and all even columns, and then aggregate the odd

columns in the group. The result should be as follows:

Script:

Conversion between rows and columns

244

SPL

 A

1 ='Sheet1!A2:I9'

2 =A1.news(~.len()\2;A1.~(1):Micro,A1.~(#*2):Group,A1.~(#*2+1):Series).select(Group!=null)

3 =A2.groups(Micro,Group;sum(Series):Series)

A2: Expand each row of A1, and the number of rows expanded is the quotient of the number

of members of the row divided by 2. In the expanded row, the first column Micro is the first member

of A1, the second column Group is the #*2(th) member of A1, and the third column Series is the

#*2+1(th) member of A1. The symbol # here represents the row number expanded by the row.

A3: Group A2 by Micro and Group, and calculate the sum of Series and name it Series column.

Conversion between rows and columns

245

SPL

13.10 Convert groups to columns after grouping

Here below is a data table with two columns (Car and Color):

Now we want to convert the data to the following form with the car type as column name, and

list all colors of each type of car and remove the duplicate color:

Script:

 A

1 =E('Sheet1!A1:B18')

2 =A1.group(Car).(Car|~.id(Color))

3 =A2.max(~.len())

4 =A2.(~.pad(null,A3))

5 =transpose(A4)

A2: Group by Car. In each group, form a sequence with car name and its distinct colors.

~.id(Color) means taking the color that is unique in this group

A3: Calculate the maximum length of all grouped sequences

Conversion between rows and columns

246

SPL

A4: Use null value to complement the sequence of each group to the maximum length for

transposing

A5: Transpose rows and columns of A4

Conversion between rows and columns

247

SPL

13.11 Rearrange multiple columns into a cross-tab

Here below is a data table:

The task is to convert the data to the following form:

Script:

 A

1 ='Sheet1!A1:C19'

2 =create(Meal,Name,Flag)

3 =A1.to(2,).run(~.run(if(~!=null,A2.record([A1(1)(#),~ , "√"]))))

4 =A2.pivot(Name;Meal,Flag)

A2: Create a table sequence having three columns Meal, Name and Flag

A3: Loop through every row starting from row 2 of A1, and then loop through the data

sequence of each row; If the sequence member is not empty, insert its corresponding column name

and itself into the table sequence of A2 in turn, and set Flag to √

A4: Group A2 by Name to perform row-to-column conversion, with the Meal values as new

column names, and Flag as the new column values

Conversion between rows and columns

248

SPL

13.12 Interconversion of rows and columns within a group

Here below is a data table:

Now we want to convert the data to the following form:

Script:

 A

1 ='Sheet1!A1:C8'

2 =A1.group@u(~(1))

3 =A2.(transpose(~.(~.to(2,))))

4 =A3.(~.(A2.(~(1)(1))(A3.#)|~)).conj()

A2: Group by the first column (Countries)

A3: Transpose the data in each group (except the country column)

A4: Concatenate the country and merge

The processing method described above is used for column-to-row conversion, this method

works for row-to-column conversion as well.

Conversion between rows and columns

249

SPL

13.13 Interconversion of rows and columns in reverse order

Here below is a data table:

Now we want to transpose the M columns of a two-dimensional table to M rows, and the

transposition order should be: the M-th column, M-1 column, M-2...2, 1. The results are as follows:

Script:

=spl("=transpose(?1).rvs()",Sheet1!A1:D5)

Reverses the order of the columns after transposing.

Script for reverse transposing:

=spl("=transpose(?1).(~.rvs())",Sheet2!A1:E4)

It should be noted what is reversed here is the order of rows.

Expand and complement

250

SPL

Chapter 14 Expand and complement

14.1 Generate continuous array

There is a column of serial numbers (No), as shown in the figure below:

Now we want to use the two numbers in each row to expand into continuous number intervals,

like this:

Script:

=spl("=E(?1).news((a=No.split(""-"").(int(~)),to(a(1),a(2)));~:No)",A1:A3)

Loop through each row, and split No with the minus sign, and then convert the split numbers

to an integer sequence and assign it to the variable a, and finally form a continuous sequence of

numbers with a(1) and a(2). The function news means expanding each row into multiple rows

according to the number of members of the number sequence, and the numeric member is the value

of No in the new row.

Expand and complement

251

SPL

14.2 Generate continuous array - concatenate results into a

string

The values in columns A and B are natural numbers, representing the start and end points of

the array respectively:

The task is to use the values in columns A and B to generate a string composed of natural

number array, and fill in the result in column C, as follows:

Enter in cell C2:

=spl("=to(?1,?2).concat@c()",A2,B2)

Then drag C2 down to every relevant row:

Expand and complement

252

SPL

14.3 Expand one row into multiple rows based on value

There is a data table, which stores some information of products. The first column is the serial

number, and the second column is the remaining quantity. The initial data is as follows:

Now we want to copy each value in column ItemID n times according to the remaining quantity

of product (i.e., the number in Qty Remaining column). The requirements are: 1) Except for the first

row (as the original row), the other copied rows only retain the value in column ItemID; 2) The

remaining quantity of product 00003 is 0, this row will be no longer retained in the new table. The

expected result is as follows:

Script:

=spl("=E(?1).news(#2;'ItemID',if(#==1,'QtyRemaining',null):'QtyRemaining',if(#==1,'InvoiceNo',

null):'InvoiceNo')",A1:C4)

Copy each row n times according to the value in the second column to generate a new table

sequence, where the values in the second and third columns use the if expression. If it is the first

row, take the original value, otherwise take the null value.

Expand and complement

253

SPL

14.4 Expand one row into multiple rows after splitting text

The following is a data table, in which columns D and E have multiple lines of text, the number

of lines is the same, and such lines are in one-to-one correspondence. For example, F corresponds

to Fail, as shown below:

Now we want to split the values in column D, E by line break, and expand into multiple rows

to make the result look like this:

Script:

=spl("=E(?1).run(Grades=Grades.split(""\n""),Comment=Comment.split(""\n"")).news(Grades.len

();Names,Class,Year,Grades(#):Grades,Comment(#):Comment)",A1:E4)

Loop through each row, split Grades and Comment into a string sequence by \n respectively,

and then expand each row into multiple rows, the number of rows is the number of members of

Grades sequence. In each new row, take the original Names, Class, and Year columns, the #th

member of the Grades sequence is the Grades in new column, and the #th member of the Comment

sequence is the Comment in new column, where # represents the row number expanded from

original row.

Expand and complement

254

SPL

14.5 Make up missing parts to make data continuous

The following table records the daily sales data of products, and some dates are missing due to

no sales data:

Now we want to list the daily sales data in the order of date, and make up the dates missed in

the original table, as shown in the following figure:

Script:

Expand and complement

255

SPL

 A

1 =E('A1:C11')

2 =A1.min(SaleDate)

3 =A1.max(SaleDate)

4 =A2|(A3-A2).(A2+~)

5 =A1.align(A4,SaleDate)

6 =A5.new(A4(#):SaleDate,Product,Amount)

A2: Find the minimum date in A1

A3: Find the maximum date in A1

A4: Concatenate all dates from the minimum date to the maximum date in order into a sequence

A5: Align the SaleDate of A1 in the order of A4

A6: Use the function new to reassign each row of A5, # represents the current row number of

A5, take the date value of the same row number in A4 as SaleDate, and then take the Product and

Amount columns of the current row of A5

Expand and complement

256

SPL

14.6 Add several blank rows every N rows

There is a data table that stores the detailed data of student examination room and seat number,

and part of the data is as follows:

Now we want to add two blank rows after every 13 rows. The result is as follows:

Expand and complement

257

SPL

Script:

 A

1 =E('A1:D152')

2 =row=A1.create().insert(0)

3 =A1.group((#-1)\13).(~|row|row).conj()

A2: Copy the data structure of A1, insert one blank row, and assign this row to the variable

row

A3: Take every 13 students into a group, add two blank rows after each group, and then

concatenate each group into a data set

Expand and complement

258

SPL

14.7 Insert row after specific row

Here below is a data table:

The task is to insert one row after the number 100, and fill in a001, a002, ... in turn, like this:

Script:

=spl("=E@b(?1).group@i(~[-1].#1==100).(~|new(string(#,""a000""):_1)).conj()",A1:A9)

Group the data. When the value in column A of the previous row is 100, create a new group.

Loop through each group, insert a record at the end of the group, whose value of the first

column is the current group number #, formatted with "a000".

Expand and complement

259

SPL

14.8 Insert blank row when meeting with data change

Here below is a data table:

We want to insert one blank row when the values in two adjacent rows change, the result is as

follows:

Script:

=spl("=?1.conj().group@o(~).(~|[null]).conj().new(~:_1)",A1:A9)

Expand and complement

260

SPL

14.9 Expand into multiple columns horizontally

The following data table stores a variety of parts and their metal subparts in an orderly manner.

When Level=2, it indicates that this row is the part row (aggregation row), and when Level=3, it

indicates this row is the subpart row. The columns Proportion and Material store the proportion and

name of metal for the subparts respectively.

The task is to put the total proportion of each metal on the right side of aggregation row:

Enter in cell E1:

 A

1 =E('A1:D12')

2 =A1.id(Material).select(~)

3 =A1.derive(${A2.concat@c()})

4 =A3.group@i(Level==2)

5 =A4.run(~.to(2,).groups(Material;sum(Proportion):value).run(A4.~(1).field(Material,value)))

6 =A3.new(${A2.concat@c()})

A2: Find out the type of Material that is unique and nonnull

A3: Append one column for each type of Material found in A2

A4: Group A3, and create a new group when Level is 2. The option @i means creating a new

group when the condition is met

A5: Loop through each group of A4, and count the sum of proportions of each material by the

Material group from the second row to the last row, and name it the value column, and loop through

each group, and assign Material column of the first row of the current group in A4 to value

A6: Select the required columns from the results in A3 and return

Expand and complement

261

SPL

14.10 Expand into multiple N-column horizontally

There is a registration table, which records the entering and leaving time of customers in a

certain bathroom on a certain day, and part of the data is as follows:

The task is to count the situation of customers in each one-hour time period from 18:00 to

22:00. If the customer is in the bathroom during a time period, fill in 1, otherwise leave it blank, as

shown in the following figure:

Enter in cell F2:

 A

1 =E('A2:D15')

2 =create(${(["Male","Female"]*4).concat@c()})

3 =interval@s(time("00:00","HH:mm"),time("18:00","HH:mm"))/86400

4
=A1.run(A2.insert(0),4.run(t1=A3+(~-1)*3600/86400,t2=A3+~*3600/86400,k=if(A1.Sex=="

M",~*2-1,~*2),if(A1.Enter<t2 && A1.Leave>t1,A2(A1.#).field(k,1))))

5 return A2

A2: Create a table sequence using 4 groups of Male and Female as its columns

A3: Convert the start time 18:00 to the value as which Excel store

A4: Loop through each row of A1, and append a new row in A2; loop through 4 time periods,

and calculate the start time t1 and end time t2 of each time period; calculate the column number k

Expand and complement

262

SPL

to be filled in according to the gender of the customer. If the customer is still in the bathroom during

a period, then fill in 1 in the kth column of the current row of A2

Expand and complement

263

SPL

14.11 Generate permutations and combinations

Here below is a data table, in which the data are separated by commas:

Now we want to list the permutations and combinations of these data, one combination per

row, as shown in the following figure:

Enter in cell A2:

 A

1 ='A1:C1'.conj().(~.split@c())

2 =A1.("A1("/#/")").concat(";")

3 =xjoin(${A2})

A1: Split the data in each cell with comma, and the option @c means splitting with comma

A2: Loop through each member of A1 and concatenate them into a string A1(1);A1(2);A1(3)

A3: Convert the string concatenated in A2 to the parameter of the function xjoin in macro form,

that is, perform full cross-product on the sequences formed by split data in each cell

Operations on text

264

SPL

Chapter 15 Operations on text

15.1 Split string - separate by comma – automatic parsing of

data type

Here is a comma-separated number string. To find the largest number:

Script:

=spl("=?1.split@cp().max()",A1)

Result: 45

The function split is used to split the string into a sequence; the option @c means splitting by

comma (you don’t have to use this option, you can use the parameter "," instead); the option @p

means automatically parsing the data type, for example, the integer string can be parsed into integers.

15.2 Split string - separate by carriage return (CR) -

automatic parsing of data type

Here is a CR-separated number string. To find the largest number:

Script:

=spl("=?1.split@np().max()",A1)

Result: 3

The function split is used to split the string into a sequence; the option @n means splitting by

CR (you don’t have to use this option, you can use the parameter "\n” instead); the option @p means

automatically parsing the data type, for example, the integer string can be parsed into integers.

Operations on text

265

SPL

15.3 Split string - separate by multi-character separator

Here is a string separated by multi-character separator. To split this string into multiple strings

by the separator “and”:

Script:

=spl("=?1.split@(""and"")",A1)

The function split is used to split the string into a sequence; the parameter "and" is used as the

separator.

Result:

15.4 Concatenate into string

The following is the size data in inches.

We want to convert the data to the one in centimeters and write the result to A2:

=spl("=?1.split@p(""x"").(string(~*2.54,""#.00"")).concat(""x"")+""cm""",A1)

Use the function split to split the string into a sequence by the separator x, the option @p

means automatically parsing the data type; convert the data in inches in the sequence to the data in

centimeters, and convert the converted data to a string sequence and retain two decimal places; use

the function concat to concatenate the string sequence into a string with the separator x, and

concatenate the centimeter unit "cm".

Operations on text

266

SPL

15.5 Parse and extract numbers

Below is a table with a column of data that is a mixture of characters and numbers. The numbers

appear in multiple places irregularly:

Now we want to extract all the numbers from each row and put them in column B. The expected

result is as follows:

Enter in cell B1:

=spl("=?1.words@d().concat()",A1)

Then drag B1 down to every relevant row

Use the words@d to split the string in each row to extract all numbers to form a sequence,

and then use the concat to concatenate every number together.

Operations on text

267

SPL

15.6 Parse and extract dates

The following table stores the event memo information:

For the convenience of future statistics, we want to extract all the date data from each row, and

put them in the next column after separating by semicolon, like this:

Enter in cell B1:

=spl("=?1.split("" "").(date(~,""dd.MM.yy"")).select(ifdate(~)).concat("";"")",A1)

Then drag B1 down to every relevant row.

Split the string with spaces to form a sequence;

Convert the text string in the sequence to the date type data according to the specified format;

Select the date type data and concatenate them into a string with semicolon.

Operations on text

268

SPL

15.7 Take out different types of characters

The following data table stores multiple types of attendance records of employees on a certain

day. For example, A means late arrival, and the number after it represents how long he/she is late;

B means early leave, and the number after it represents how long he/she leaves early; C means

asking for leave, the number after it represents how long he/she asks for leave, and so on. Now we

want to summarize the attendance situation, and then count the sum of the numbers after each letter,

and finally fill in the results in the black box.

Enter in cell B4:

 A

1 ='A1:G1'.conj()

2 =create(Type,Value)

3 =A1.(~.words@wp().run(if(#%2==1,A2.record([~,number(~[1])]))))

4 =A2.groups(Type;sum(Value):Total)

A2: Create a table sequence having two columns: Type and Value.

A3: Loop through the string in each cell, and split the string into words. The option @w means

that the string will be thoroughly split in such a way that the Chinese characters/symbols are split

into single character, and the English words/numbers are split into single word; the option p means

that the beginning of the data will be recognized as a numeric value or a date according to the data

type, and split into a whole. After splitting, loop through the split sequence, if the current member's

number is odd, take the current member and its next member and convert them into a value to form

a row of data and save it in A2

A4: Group A2 by Type and calculate the sum of Value

Operations on text

269

SPL

15.8 Take out words

There is a text data table:

To take out the number strings in the text:

=spl("=?1.words@d()",A1)

To take out the English words and the number strings in the text:

=spl("=?1.words@a()",A1)

To take out all the characters: split Chinese characters/symbols into single character, and split

English words/numbers into single word:

=spl("=?1.words@w()",A1)

Operations on text

270

SPL

15.9 Parse and extract Key-Value pair

Data 1:

Script 1-1:

=spl("=?1.property()",A1)

The function property is used to read the attribute value from a KV string. When there is no

parameter, it means to return all attributes to form a table sequence.

Result 1-1:

Script 1-2:

=spl("=?1.property@v(""A"")",A1)

The function property is used to read the attribute value of A from a KV string. @v means

that it will be parsed into a value after reading it out.

Result 1-2:

Data 2:

Script 2:

=spl("=?1.property@vcj()",A1)

The function property is used to read the attribute value from a KV string. When there is no

parameter, it means to return all attributes to form a table sequence. @v means that the string is read

first and then parsed into the value; the option @c means that the sectioned strings are separated by

a comma or semicolon.

Result 2:

Operations on text

271

SPL

Data 3:

Script 3:

=spl("=replace(replace(?1,""{"",""""),""}"",""="").property@vc()",A1)

Change the format of KV string to K=V.

The function property is used to read the attribute value from a KV string. When there is no

parameter, it means to return all attributes to form a table sequence. @v means that the string is read

first and then parsed into the value; the option @j means that the name and value of byte strings are

separated by comma or semicolon.

Result 3:

Operations on date and time

272

SPL

Chapter 16 Operations on date and time

16.1 Count date by year and month

Here below is a data table:

Now we want to calculate the sum of values in column Val by the year and month in column

Date, the result is as follows:

Script:

=spl("=E(?1).run(Date=date(""18991230"",""yyyyMMdd"")+Date).groups(month@y(Date):

YM;sum(Val):Total)",A1:B11)

Group the dates in column Date by year and month, and then calculate the sum of the

corresponding data in column Val; the option @y following the month means that the parameter

includes the year data, and a 6-digit number will be returned.

Operations on date and time

273

SPL

16.2 Calculate time repeat interval

There is a registration table, which records the entering and leaving time of customers in a

certain bathroom on a certain day:

The task is to calculate the number of minutes each customer stays in each time period, as

shown in the following figure:

Enter in cell D2:

 A

1 ='D$1'.split("-").(interval@s(time("00:00","HH:mm"),time(~,"HH:mm"))/60)

2 =min('$C2'*1440,A1(2))-max('$B2'*1440,A1(1))

3 =if(A2>0,A2,null)

A1: Split D1 into two values by -, and then convert them to the number of minutes from 00:00

A2: The time stored in this Excel table is obtained by dividing the seconds from 00:00 to the

present by 86400, so multiplying the time by 1440 is the number of minutes from 00:00 to the

present. Calculate the larger value of customer's entering time and the start time, and the smaller

value of customer's leaving time and the end time, and then calculate the time difference (minutes)

between the two values.

Then drag D2 to every relevant row and column.

Operations on date and time

274

SPL

16.3 Generate a time sequence with the same time interval –

one day

Script: =spl("=periods(date(""2020-01-01"",""yyyy-MM-dd""),date(""2020-01-10"",""yyyy-

MM-dd""),1)")

Note: for the function periods(s,e,i), s represents the start date, e represents the end date, and

i represents the time interval. The default unit for time interval is day. The option @m means the

time interval unit is month, @y means year, @q means quarter, @t means ten days, and @s means

second.

2020-01-01

2020-01-02

2020-01-03

2020-01-04

2020-01-05

2020-01-06

2020-01-07

2020-01-08

2020-01-09

2020-01-10

Operations on date and time

275

SPL

16.4 Generate a time sequence with the same time interval –

two days

Script: =spl("=periods(date(""2020-01-01"",""yyyy-MM-dd""),date(""2020-01-10"",""yyyy-

MM-dd""),2)")

Note: when the third parameter of periods is set to 2, it means two interval units.

2020-01-01

2020-01-03

2020-01-05

2020-01-07

2020-01-09

2020-01-10

Operations on date and time

276

SPL

16.5 Generate a time sequence with the same time interval –

two hours

Script: =spl("=periods@s(""08:00:00"",""20:00:00"",7200)")

Note: The option @s means the time interval unit is second.

Operations on date and time

277

SPL

16.6 Generate a time sequence with the same time interval –

one month

Script: =spl("=periods@mox(""2018-03-31"",""2019-03-01"",1)")

Note: this code is to generate a date sequence with an interval of 1 month between 2018-03-

31 and 2019-03-01; the option @m means the time interval unit is month; x means the back

endpoint (2019-03-01) is not included; and o means that you do not need to adjust the time to the

starting point of the time unit, if this option was omitted, the time sequence would be adjusted to

the 1st day of each month from the second time point.

Operations on date and time

278

SPL

16.7 Generate a time sequence with the same time interval -

Sunday

To generate a sequence of Sundays from 2020-02-01 to 2020-04-30, like this:

Script:

 A

1 =date("2020-02-01")

2 =pdate@w(A1)

3 =if(A2<A1,A2+7,A2)

4 =periods@x(A3,"2020-04-30",7)

A1: The start date 2020-02-01

A2: Find the Sunday of the week of the start date, the option @w means to get the Sunday of

the week of the specified date

A3: If A2 is earlier than the start date, let A3 be A2+7, i.e., the next Sunday, otherwise let A3

be A2

A4: Generate a date sequence with a 7-day interval between the first Sunday (A3) and the end

date (2020-04-30), that is, a sequence of consecutive Sundays within the time period of specifying

the start and end times. The option @x means that the backend date 2020-04-30 is not included.

Operations on date and time

279

SPL

16.8 The first Friday of a certain month/quarter/year

Script:

 A

1 >n=5

2 =pdate@w(pdate@m(date("2021-05-01"))+6-n)+n

3 =pdate@w(pdate@q(date("2021-05-01"))+6-n)+n

4 =pdate@w(pdate@y(date("2021-05-01"))+6-n)+n

A1: n represents the day of the week, and Sunday is 0, followed by +1

A2: Use the pdate@m to find the first day of the month, then add 6-n days to this day, and

find the Sunday of the week of the date, and finally add n days to obtain result: 2021-05-07

A3: Use the pdate@q to find the first day of the quarter, and then add 6-n days to this day,

and find the Sunday of the week of the date, and finally add n days to obtain result: 2021-04-02

A4: Use the pdate@y to find the first day of the year, and then add 6-n days to this day, and

find the Sunday of the week of the date, and finally add n days to obtain result: 2021-01-01

	Table of contents
	Preface
	Chapter 1 Reading and writing files and common computing
	1.1 Text file
	1.2 Excel file
	1.3 Files and directories
	1.4 General data table operations

	Chapter 2 Use Excel Add-in
	2.1 Installation and configuration
	2.2 Using spl() function
	2.3 Editing SPL code

	Chapter 3 Using the clipboard
	3.1 Basic usage
	3.2 Edit the script at will
	3.3 Multiple result data areas
	3.4 Multiple source data areas

	Chapter 4 Merge Excel files
	4.1 Merge by row - same name and number of columns
	4.2 Merge by column - same name and number of rows
	4.3 Merge by row - different name and number of columns - keep all columns
	4.4 Merge by row - different name and number of columns - keep only duplicate columns
	4.5 Merge by row - different name and number of columns - keep only columns of the first file
	4.6 Merge by column - different name and number of rows - keep all rows
	4.7 Merge by column - different name and number of rows - keep only duplicate rows
	4.8 Merge by column - different name, number and order of rows - keep only rows of the first file and align the rows
	4.9 Merge by row - convert file names to column values - unfixed number of files
	4.10 Merge by column - convert file names to column names
	4.11 Merge by column - one to many - copy data
	4.12 Merge by column - one to many - leave subsequent rows empty
	4.13 Merge and de-duplicate by row - duplicate whole row of data
	4.14 Merge and de-duplicate by row - duplicate row headers - keep the data that firstly appear
	4.15 Merge and de-duplicate by row - duplicate row headers - keep non-null data
	4.16 Merge and de-duplicate by row - duplicate row headers - delete all duplicate data
	4.17 Merge and de-duplicate by column - duplicate column names - keep data in columns that appear later
	4.18 Merge by row and column simultaneously - keep data that firstly appear
	4.19 Format conversion - merge multiple card-style files to form one row-based table
	4.20 Format conversion - merge multiple primary-sub table files to form two row-based tables
	4.21 Aggregate files - same rows and columns
	4.22 Aggregate files - merge by row and column simultaneously - aggregate duplicate records
	4.23 Aggregate files - aggregate by cell positions - unfixed number of files
	4.24 Aggregate files - append and aggregate
	4.25 Aggregate files - cumulate and aggregate
	4.26 Aggregate files - insert aggregation sheet

	Chapter 5 Split Excel file
	5.1 Split by row - by number of rows
	5.2 Split by row - group by data - split into multiple Sheets
	5.3 Split by row - group by data - split into multiple files
	5.4 Split by row - segment by data (by filtering condition)
	5.5 Split by row - generate one card per row
	5.6 Split by row - split multiple cards to make one card generate one file
	5.7 Format conversion - split tables with primary-sub relationship into cards
	5.8 Split by column - by column - take column name as file name
	5.9 Split by column - by column - take column name as Sheet name
	5.10 Split by column - merge duplicate rows after splitting
	5.11 Split multi-Sheet file into multiple files - unfixed number of Sheets

	Chapter 6 Searching, positioning and filtering
	6.1 Search for the nth, the nth from last
	6.2 Search for top N, last N
	6.3 Filter by position
	6.4 Search for position of a certain value, take the value by position
	6.5 Search for row number that satisfies the condition
	6.6 Search for row that satisfies the condition
	6.7 Filter by multiple conditions
	6.8 Search by adjacent rows
	6.9 Take values of adjacent rows in same group (search & filter within adjacent intervals)
	6.10 Filter by group’s aggregation value
	6.11 Use group’s aggregation value when filtering
	6.12 Filter by maximum or minimum value within a group (find out one for each group)
	6.13 Find out interval in which a certain condition occurs continuously

	Chapter 7 Calculate cell value and aggregation value
	7.1 Simple column-wise aggregation
	7.2 Conditional aggregation
	7.3 Fill aggregation value in the first row of the same group of data
	7.4 Split aggregation value and fill them in detail rows
	7.5 Simple accumulation
	7.6 Accumulate data in each group
	7.7 Filter by Accumulation
	7.8 Early-terminated accumulation
	7.9 Accumulation for continuous occurrence of a certain condition
	7.10 Calculate using adjacent row/interval when data of the same group is continuous (link relative ratio and YOY)
	7.11 Calculate using adjacent row/interval when data of the same group is discontinuous (LRR/YOY in the case of missing data)
	7.12 Merge data of the same group
	7.13 String concatenation and aggregation
	7.14 Calculate proportion using aggregation information of data of the same group
	7.15 Generate number in each group

	Chapter 8 Operation on sets and judgment of belongingness
	8.1 Intersection, union and difference in the case of simple members - two sets
	8.2 Intersection, union and difference in the case of simple members - multiple sets
	8.3 Intersection, union and difference in the case of row-based data - two sets - by key column
	8.4 Intersection, union and difference in the case of row-based data - two sets - by whole row
	8.5 Intersection, union and difference in the case of row-based data - multiple sets
	8.6 Judge equality of sets when order is considered
	8.7 Judge belongingness of sets when order is considered
	8.8 Judge equality of sets when order is ignored
	8.9 Judging belongingness of sets when order is ignored

	Chapter 9 Judgment, counting and deleting of duplicate data
	9.1 Judge duplication of simple members
	9.2 Judge duplication of row-based data - by key column
	9.3 Judge duplication of row-based data - by whole row
	9.4 Count number of repetitions of simple members
	9.5 Count number of repetitions of row-based data - by key column
	9.6 Count number of repetitions of row-based data - by whole row
	9.7 Deduplication of simple data
	9.8 Deduplication of row-based data - by key column
	9.9 Deduplication of row-based data - by whole row
	9.10 Deduplication of simple data - keeping order
	9.11 Deduplication of row-based data - by key column - keeping order
	9.12 Deduplication of row-based data - by whole row - keeping order
	9.13 Filter by number of repetitions
	9.14 Delete data that can be paired

	Chapter 10 Ranking and Sorting
	10.1 Sorting of simple members
	10.2 Sorting of row-based data
	10.3 Sorting of row-based data - by combination of multiple columns
	10.4 Sorting of row-based data - by expression
	10.5 Sort in group
	10.6 Sort by specified order
	10.7 Sort by specified order in which duplicate values exist
	10.8 Shuffle the data
	10.9 Ranking of simple members
	10.10 Ranking of row-based data
	10.11 Ranking of row-based data - by combination of multiple columns
	10.12 Ranking of row-based data - by expression
	10.13 Concatenate members with the same ranking
	10.14 Rank in group

	Chapter 11 Grouping and aggregating
	11.1 Simple grouping
	11.2 Group by combination of multiple columns
	11.3 Group by expression
	11.4 Group by segment
	11.5 Enumeration grouping
	11.6 Put every N members in a group
	11.7 Convert one-dimensional array to two-dimensional array
	11.8 Take adjacent data as grouping criteria
	11.9 Group when meeting blank row
	11.10 Group when meeting non-null value
	11.11 Group by interval of data values
	11.12 Concatenate data within group into text
	11.13 Auto-aggregating in the case of multiple columns - unfixed number

	Chapter 12 Association and comparison
	12.1 Use formulas to handle association
	12.2 Single column association
	12.3 Multiple columns association
	12.4 Reference multi-column data from association table
	12.5 Use formulas to handle interval association
	12.6 Use association table to handle interval association
	12.7 Use a two-dimensional association table
	12.8 Use interval range to perform retroactive searching of association table
	12.9 Associate multiple rows of data
	12.10 Associate with detail table
	12.11 Find changes through comparison
	12.12 Dynamic association operation

	Chapter 13 Conversion between rows and columns
	13.1 Row-to-column conversion for fixed columns
	13.2 Convert row-based table to crosstab
	13.3 Convert crosstab to row-based table
	13.4 Interconversion of upper layer groups for rows and columns - column-to-row
	13.5 Interconversion of upper layer groups for rows and columns - row-to-column
	13.6 Put data in a group horizontally into columns
	13.7 Re-group or sort when filling grouped data into columns
	13.8 Convert certain columns of the same row, as group members, to multiple rows
	13.9 Convert group formed by every N columns to multiple rows
	13.10 Convert groups to columns after grouping
	13.11 Rearrange multiple columns into a cross-tab
	13.12 Interconversion of rows and columns within a group
	13.13 Interconversion of rows and columns in reverse order

	Chapter 14 Expand and complement
	14.1 Generate continuous array
	14.2 Generate continuous array - concatenate results into a string
	14.3 Expand one row into multiple rows based on value
	14.4 Expand one row into multiple rows after splitting text
	14.5 Make up missing parts to make data continuous
	14.6 Add several blank rows every N rows
	14.7 Insert row after specific row
	14.8 Insert blank row when meeting with data change
	14.9 Expand into multiple columns horizontally
	14.10 Expand into multiple N-column horizontally
	14.11 Generate permutations and combinations

	Chapter 15 Operations on text
	15.1 Split string - separate by comma – automatic parsing of data type
	15.2 Split string - separate by carriage return (CR) - automatic parsing of data type
	15.3 Split string - separate by multi-character separator
	15.4 Concatenate into string
	15.5 Parse and extract numbers
	15.6 Parse and extract dates
	15.7 Take out different types of characters
	15.8 Take out words
	15.9 Parse and extract Key-Value pair

	Chapter 16 Operations on date and time
	16.1 Count date by year and month
	16.2 Calculate time repeat interval
	16.3 Generate a time sequence with the same time interval – one day
	16.4 Generate a time sequence with the same time interval – two days
	16.5 Generate a time sequence with the same time interval – two hours
	16.6 Generate a time sequence with the same time interval – one month
	16.7 Generate a time sequence with the same time interval - Sunday
	16.8 The first Friday of a certain month/quarter/year

